Time-Resolved Study of Silicon During Pulsed-Laser Annealing

1983 ◽  
Vol 13 ◽  
Author(s):  
B. C. Larson ◽  
C. W. White ◽  
T. S. Noggle ◽  
J. F. Barhorst ◽  
D. M. Mills

ABSTRACTNear surface temperatures and temperature gradients have been studied in silicon during pulsed laser annealing. The investigation was carried out using nanosecond resolution x-ray diffraction measurements made at the Cornell High Energy Synchrotron Source. Thermal-induced-strain analyses of these real-time, extended Bragg scattering measurements have shown that the lattice temperature reached the melting point during 15 ns, 1.1–1.5 J/cm2 ruby laser pulses and that the temperature of the liquid-solid interface remained at that temperature throughout the high reflectivity phase, after which time the surface temperature subsided rapidly. The temperature gradients below the liquid-solid interface were found to be in the range of 107°C/cm.

1984 ◽  
Vol 35 ◽  
Author(s):  
J.Z. Tischler ◽  
B.C. Larson ◽  
D.M. Mills

ABSTRACTSynchrotron x-ray pulses from the Cornell High Energy Synchrotron Source (CHESS) have been used to carry out nanosecond resolution measurements of the temperature distrubutions in Ge during UV pulsed-laser irradiation. KrF (249 nm) laser pulses of 25 ns FWHM with an energy density of 0.6 J/cm2 were used. The temperatures were determined from x-ray Bragg profile measurements of thermal expansion induced strain on <111> oriented Ge. The data indicate the presence of a liquid-solid interface near the melting point, and large (1500-4500°C/pm) temperature gradients in the solid; these Ge results are analagous to previous ones for Si. The measured temperature distributions are compared with those obtained from heat flow calculations, and the overheating and undercooling of the interface relative to the equilibrium melting point are discussed.


1981 ◽  
Vol 4 ◽  
Author(s):  
B. C. Larson ◽  
C. W. White ◽  
T. S. Noggle ◽  
J. F. Barhorst ◽  
D. Mills

ABSTRACTSynchrotron x-ray pulses have been used to make nanosecond resolution time-resolved x-ray diffraction measurements on silicon during pulsed laser annealing. Thermal expansion analysis of near-surface strains during annealing has provided depth dependent temperature profiles indicating >1100°C temperatures and diffraction from boron implanted silicon has shown evidence for near-surface melting. These results are in qualitative agreement with the thermal melting model of laser annealing.


1983 ◽  
Vol 13 ◽  
Author(s):  
G. E. Jellison ◽  
D. H. Lowndes ◽  
R. F. Wood

ABSTRACTRaman temperature measurements during pulsed laser annealing of Si by Compaan and co-workers are critically examined. It has been shown previously that the Stokes to anti-Stokes ratio depends critically upon the optical properties of silicon as a function of temperature. These dependences, coupled with the large spatial and temporal temperature gradients normally found immediately after the high reflectivity phase, result in large variations in the calculated temperature depending upon the probe laser pulse width and the pulse-to-pulse and spatial variations in the annealing pulse energy density.


1984 ◽  
Vol 35 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

ABSTRACTWe have used time-resolved x-ray diffraction measurements of thermal expansion induced strain to measure overheating and undercooling in <100> and <111> oriented silicon during pulsed laser melting and regrowth. 249 nm (KrF) excimer laser pulses of 1.2 J/cm2 energy density and 25 ns FWHM were synchronized with x-ray pulses from the Cornell High Energy Synchrotron Source (CHESS) to carry out Bragg profile measurements with ±2 ns time resolution. Combined overheating and undercooling values of 120 ± 30 K and 45 ± 20 K were found for the <111> and <100> orientations, respectively, and these values have been used to obtain information on the limiting regrowth velocities for silicon.


1983 ◽  
Vol 42 (3) ◽  
pp. 282-284 ◽  
Author(s):  
B. C. Larson ◽  
C. W. White ◽  
T. S. Noggle ◽  
J. F. Barhorst ◽  
D. M. Mills

1985 ◽  
Vol 51 ◽  
Author(s):  
B. C. Larson ◽  
J. Z. Tischler ◽  
D. M. Mills

ABSTRACTNanosecond resolution time-resolved x-ray diffraction measurements of thermal strain have been used to measure the interface temperatures in silicon during pulsed-laser irradiation. The pulsed-time-structure of the Cornell High Energy Synchrotron Source (CHESS) was used to measure the temperature of the liquid-solid interface of <111> silicon during melting with an interface velocity of 11 m/s, at a time of near zero velocity, and at a regrowth velocity of 6 m/s. The results of these measurements indicate 110 K difference between the temperature of the interface during melting and regrowth, and the measurement at zero velocity shows that most of the difference is associated with undercooling during the regrowth phase.


1981 ◽  
Vol 4 ◽  
Author(s):  
M. O. Thompson ◽  
G. J. Galvin ◽  
J. W. Mayer ◽  
R. B. Hammond ◽  
N. Paulter ◽  
...  

ABSTRACTMeasurements were made of the conductance of single crystal Au-doped Si and silicon-on-sapphire (SOS) during irradiation with 30 nsec ruby laser pulses. After the decay of the photoconductive response, the sample conductance is determined primarily by the thickness and conductivity of the molten layer. For the single crystal Au-doped Si, the solid-liquid interface velocity during recrystallization was determined from the current transient to be 2.5 m/sec for energy densities between 1.9 and 2.6 J/cm2, in close agreement with numerical simulations based on a thermal model of heat flow. SOS samples showed a strongly reduced photoconductive response, allowing the melt front to be observed also. For complete melting of a 0.4 μm Si layer, the regrowth velocity was 2.4 m/sec.


1986 ◽  
Vol 74 ◽  
Author(s):  
J. H. Perepezko ◽  
D. M. Follstaedt ◽  
P. S. Peercy

AbstractPulsed laser melting of the low-temperature σ (tetragonal, D8b) phase has been used to generate a liquid undercooled with respect to the melting point of the higher-temperature, equilibrium α (bcc) solid solution in equiatomic Fe-V alloys. From calculations based on reported thermodynamic data and equilibrium transformation temperatures, the metastable melting point of the σ phase is about 1720 K for an Fe-50 at.% V alloy, which is 54 K below the melting temperature of the α phase. During rapid heating of well-annealed σ-phase material with a 30 ns laser pulse to above melt threshold, the σ → α reaction is suppressed, so that the melt zone is undercooled by ∼ 54 K with respect to the equilibrium α phase. The α phase nucleates from the undercooled molten surface layer and is retained during the subsequent rapid cooling (∼ 1010 K/s) because of the relatively sluggish α → σ transformation. X-ray diffraction (Read camera) and TEM identified the α phase in the near-surface after melting σ with incident laser energies (1.0–1.41 J/cm2) which are well above the melt threshold as determined by changes in reflectivity (∼ 0.7 J/cm2). The α phase nucleated from the undercooled liquid within ∼ 20 ns.


1983 ◽  
Vol 23 ◽  
Author(s):  
John T.A. Pollock ◽  
Alex Rose

ABSTRACTFrom reported equilibrium partial and total dissociation pressure data for GaAs and melt times derived from reported time resolved reflectivity experiments, estimates have been made of the anticipated rate of As loss. Good agreement was found with experimentally determined As loss. A similar approach using experimentally determined Ga loss data allowed estimates of the maximum temperatures reached during pulsed laser annealing. These temperatures are considerably higher than suggested in thermal modelling studies. The boiling point of Ga gould be exceeded at incident laser energies >0.8 J cm−2.


Sign in / Sign up

Export Citation Format

Share Document