Role of Dislocation Interactions in Decreasing Mobile Threading Dislocation Density and Limiting Strain Relaxation in Si1-xGex Heteroepitaxial Films

1994 ◽  
Vol 356 ◽  
Author(s):  
Veronique T Gillard ◽  
William D Nix

AbstractIn situ substrate curvature measurements obtained during isothermal annealing of Si1-xGex films grown on (001) Si substrates allow determination of the evolution of strain versus time in these films. By coupling the strain relaxation measurements with previous measurements of dislocation velocities in this system, the mobile threading dislocation density and its evolution in the course of strain relaxation can be determined. The results indicate that in the late stage of strain relaxation, the mobile threading dislocation density decreases significantly. Results obtained with samples of two different sizes show that this decrease in mobile dislocation density is not primarily associated with dislocations running out at the edges of the film but with dislocation interactions impeding their further motion. Furthermore, for films thinner than 500 nm the residual strains after annealing are significantly higher than the values predicted by the equilibrium theory of misfit dislocations. The measured residual strains are compared with predictions based on Freund’s treatment of the blocking of a moving threading segment by an orthogonal misfit dislocation in its path. We find that the blocking criterion gives a very good account of the residual strain in Si1-xGex films and that blocking of threading dislocations by other misfit dislocations appears to play an important role in the late stage of strain relaxation.

1990 ◽  
Vol 198 ◽  
Author(s):  
Hyunchul Sohn ◽  
Eicke R. Weber ◽  
Jay Tu ◽  
Henry P. Lee ◽  
Shy Wang

ABSTRACTThe growth of GaAs films by MBE on mesa-type patterned Si substrates has been investigated. Mesa widths were varied from 10 µm to 200 µm and were prepared using chemical etching with Si3N4 masks and reactive ion etching. The residual stress in the epitaxial layer was estimated using low temperature (7K) photoluminescence and the defect distribution was studied by cross sectional TEM, dislocation densities were in addition determined by etch pits. The residual stress and the dislocation density decreased monotonically with the reduction of growth area. By the incorporation of strained layers with the reduction of growth area, the etch pit density in GaAs layers on mesas was reduced further.


2001 ◽  
Vol 673 ◽  
Author(s):  
E.M. Rehder ◽  
T.S. Kuan ◽  
T.F. Kuech

ABSTRACTWe have made an extensive study of Si0.82Ge0.18 film relaxation on silicon on insulator (SOI) substrates having a top Si layer 40, 70, 330nm, and 10[.proportional]m thick. SiGe films were deposited with a thickness up to 1.2[.proportional]m in an ultrahigh vacuum chemical vapor deposition system at 630°C. Following growth, films were characterized by X-ray diffraction and a dislocation revealing etch. The same level of relaxation is reached for each thickness of SiGe film independent of the substrate structure. Accompanying the film relaxation is the development of a tetragonal tensile strain in the thin Si layer of the SOI substrates. This strain reached 0.22% for the 1.2[.proportional]m film on the 40nm SOI and decreases with SOI thickness. The Si thickness of the SOI substrate also effected the threading dislocation density. For 85% relaxed films the density fell from 7×106 pits/cm2 on bulk Si to 103pits/cm2 for the 40, 70, and 330nm SOI substrates. The buried amorphous layer of the SOI substrate alters the dislocation dynamics by allowing dislocation core spreading or dislocation dissociation. The reduced strain field of these dislocations reduces dislocation interactions and the pinning that results. Without the dislocation pinning, the misfit dislocations can extend longer distances yielding a greatly reduced threading dislocation density.


1995 ◽  
Vol 379 ◽  
Author(s):  
H. Zogg ◽  
P. Müller ◽  
A. Fach ◽  
J. John ◽  
C. Paglino ◽  
...  

ABSTRACTThe strain induced by the thermal mismatch in Pbl−xSnxSe and other IV–VI compound layers on Si(111)-substrates relaxes by glide of dislocations in the main <110> {001}-glide system. The glide planes are arranged with 3-fold symmetry and inclined to the (111)-surface. Despite a high threading dislocation density (> 107 cm−2) in these heavily lattice mismatched structures, the misfit dislocations move easily even at cryogenic temperatures and after many temperature cycles between RT and 77K. The cumulative plastic deformation after these cycles is up to 500%! Despite a pronounced deformation hardening occurs, the structural quality of the layer is only slightly adversely affected as regards additional threading dislocations created. The interaction probability between these dislocations is estimated to be about 10−5.


Author(s):  
W. Qian ◽  
M. Skowronski ◽  
R. Kaspi ◽  
M. De Graef

GaSb thin film grown on GaAs is a promising substrate for fabrication of electronic and optical devices such as infrared photodetectors. However, these two materials exhibit a 7.8% lattice constant mismatch which raises concerns about the amount of extended defects introduced during strain relaxation. It was found that, unlike small lattice mismatched systems such as InxGa1-xAs/GaAs or GexSi1-x/Si(100), the GaSb/GaAs interface consists of a quasi-periodic array of 90° misfit dislocations, and the threading dislocation density is low despite its large lattice mismatch. This paper reports on the initial stages of GaSb growth on GaAs(001) substrates by molecular beam epitaxy (MBE). In particular, we discuss the possible formation mechanism of misfit dislocations at the GaSb/GaAs(001) interface and the origin of threading dislocations in the GaSb epilayer.GaSb thin films with nominal thicknesses of 5 to 100 nm were grown on GaAs(001) by MBE at a growth rate of about 0.8 monolayers per second.


1997 ◽  
Vol 484 ◽  
Author(s):  
H.-Y. Wei ◽  
L. Salamanca-Riba ◽  
N. K. Dhar

CdTe epilayers were grown by molecular beam epitaxy on As-passivated nominal (211) Si substrates using thin interfacial ZnTe layers. By using thin recrystallized (initially amorphous) ZnTe buffei layers, we utilized migration enhanced epitaxy (MEE) in the ZnTe layer and overcome the tendency toward three dimensional nucleation. The threading dislocation densities in 8–9 tm thick CdTe films deposited on the recrystallized amorphous ZnTe films were in the range of 2 to 5 × 105 cm−2. In addition to the reduction of threading dislocation density, the interface between the ZnTe layers and the Si substrate is much smoother and the microtwin density is an order of magnitude lower than in regular MEE growth. In order to understand the initial nucleation mechanism of the ZnTe on the As precursor Si surface, we also grew ZnTe epilayers on Te precursor treated Si substrates. The growth mode, microtwin density, and threading dislocation density are compared for films grown on Si substrates with different surface precursors and grown by different growth methods.


2004 ◽  
Vol 95 (10) ◽  
pp. 5347-5351 ◽  
Author(s):  
J. Cai ◽  
P. M. Mooney ◽  
S. H. Christiansen ◽  
H. Chen ◽  
J. O. Chu ◽  
...  

1989 ◽  
Vol 145 ◽  
Author(s):  
P.N. Uppal ◽  
J.S. Ahearn ◽  
R. Herring

AbstractThe density and arrangement of dislocations in In0.15Ga0.85As grown on GaAs(100)) were determined by transmission electron microscopy as a function of misorientation toward (111)A, (111)B, and (110). Strained layer superlattices were used in all cases to reduce dislocation density. Layers grown on exact GaAs(100) exhibited a non-uniform threading dislocation dis- tribution whereby some areas had a high density (∼ 109cm-2or higher) of dislocation tangles and other areas that we in between had a more uniform density (∼ 2 x 107cm-2). The misorientated layers exhibited a uniform threading dislocation distribution with densities of ∼ 5 x 106 cm-2 for (100) misoriented towards (111)A, ∼ 1 x 107cm-2towards (111)B, and ∼ 3 x 107cm-2 towards (110). The misfit dislocation network (dislocations located at the GaAs-InO0.15Ga0.85 As interface) formed orthogonal dislocation arrays in the case of exact (100) substrates and slightly non-ortho- gonal arrays in the case of misoriented substrates. These results are explained with the help of a general glide model of strain relaxation in which the exact (100) orientation has eight equally stressed glide systems which presumably activate during strain relaxation. With misoriented substrates the stress symmetry is broken and fewer glide systems experience the maximum stress, thus reducing the number of active dislocation systems. A small asymmetry in interfacial dis- location density was observed in all the cases where the linear dislocation density along the two (011) and (011) orthogonal directions differed by about 20%. This is explained by the preferred activation of (x-dislocations (high dislocation mobility) over 13-dislocations (low dislocation mobility).


1997 ◽  
Vol 486 ◽  
Author(s):  
Srikanth B. Samavedam ◽  
Matthew T. Currie ◽  
Thomas A. Langdo ◽  
Steve M. Ting ◽  
Eugene A. Fitzgerald

AbstractGermanium (Ge) photodiodes are capable of high quantum yields and can operate at gigahertz frequencies in the 1–1.6 μm wavelength regime. The compatibility of SiGe alloys with Si substrates makes Ge a natural choice for photodetectors in Si-based optoelectronics applications. The large lattice mismatch (≈4%) between Si and Ge, however, leads to the formation of a high density of misfit and associated threading dislocations when uniform Ge layers are grown on Si substrates. High quality Ge layers were grown on relaxed graded SiGe/Si layers by ultra-high vacuum chemical vapor deposition (UHVCVD). Typically, as the Ge concentration in the graded layers increases, strain fields from underlying misfit dislocations result in increased surface roughness and the formation of dislocation pile-ups. The generation of pile-ups increases the threading dislocation density in the relaxed layers. In this study the pileup formation was minimized by growing on miscut (001) substrates employing a chemical mechanical polishing (CMP) step within the epitaxial structure. Other problems such as the thermal mismatch between Si and Ge, results in unwanted residual tensile stresses and surface microcracks when the substrates are cooled from the growth temperature. Compressive strain has been incorporated into the graded layers to overcome the thermal mismatch problem, resulting in crack-free relaxed cubic Ge on Si at room temperature. The overall result of the CMP step and the growth modifications have eliminated dislocation pile-ups, decreased gas-phase nucleation of particles, and eliminated the increase in threading dislocation density that occurs when grading to Ge concentrations greater than 70% Ge. The threading dislocation density in the Ge layers determined through plan view transmission electron microscopy (TEM) and etch pit density (EPD) was found to be in the range of 2 × 106/cm2. Ge p-n diodes were fabricated to assess the electronic quality and prove the feasibility of high quality photodetectors on Si substrates.


2019 ◽  
Vol 9 (9) ◽  
pp. 1772
Author(s):  
Gu ◽  
Zhao ◽  
Ye ◽  
Deng ◽  
Lu

Single-crystalline Si1−xGex thin films on Si (100) with low threading dislocation density (TDD) are highly desired for semiconductor industrials. It is challenging to suppress the TDD since there is a large mismatch (4.2%) between Ge and Si—it typically needs 106–107/cm2 TDD for strain relaxation, which could, however, cause device leakage under high voltage. Here, we grew Si1−xGex (x = 0.5–1) films on Si (001) by low temperature molecular beam epitaxy (LT-MBE) at 200 °C, which is much lower than the typical temperature of 450–600 °C. Encouragingly, the Si1−xGex thin films grown by LT-MBE have shown a dramatically reduced TDD down to the 103–104/cm2 level. Using transmission electron microscopy (TEM) with atomic resolution, we discovered a non-typical strain relaxation mechanism for epitaxial films grown by LT-MBE. There are multiple-layered structures being introduced along out-of-plane-direction during film growth, effectively relaxing the large strain through local shearing and subsequently leading to an order of magnitude lower TDD. We presented a model for the non-typical strain relaxation mechanism for Si1−xGex films grown on Si (001) by LT-MBE.


Sign in / Sign up

Export Citation Format

Share Document