Relationship Between Stress and Surface Roughness in Krypton Implanted MgO

1994 ◽  
Vol 356 ◽  
Author(s):  
Laurence Gea ◽  
Jean-Luc Loubet ◽  
Roger Brenier ◽  
Paul Thevenard

Abstract(001) MgO single crystals were implanted with 150 keV krypton ions (Kr+) at a fluence of 5.1016 ions.cm-2 . The implanted surface, observed with an Atomic Force Microscope (AFM) exhibits striking features that can be described as undulations with a wavelength of 0.5 [μm. We correlate these features to the decrease in density and the stresses induced by the implantation damage. As a matter of fact, a model of surface instabilities provides a relationship between the wavelength of the ondulations and internal stresses. Using this model, implantation stresses are calculated to 2.2 GPa. This is in good agreement with the value of 2 GPa obtained with the help of the microindentation technique and the literature data. Some effects of an ionizing post-irradiation on stress and surface roughness are described.

2020 ◽  
Author(s):  
Benjamin P. A. Gabriele ◽  
Craig J. Williams ◽  
Douglas Stauffer ◽  
Brian Derby ◽  
Aurora J. Cruz-Cabeza

<div> <div> <div> <p>Single crystals of aspirin form I were cleaved and indented on their dominant face. Upon inspection, it was possible to observe strongly anisotropic shallow lateral cracks due to the extreme low surface roughness after cleavage. Atomic Force Microscopy (AFM) imaging showed spalling fractures nucleating from the indent corners, forming terraces with a height of one or two interplanar spacings d100. The formation of such spalling fractures in aspirin was rationalised using basic calculations of attachment energies, showing how (100) layers are poorly bonded when compared to their relatively higher intralayer bonding. An attempt at explaining the preferential propagation of these fractures along the [010] direction is discussed. </p> </div> </div> </div>


2020 ◽  
Author(s):  
Benjamin P. A. Gabriele ◽  
Craig J. Williams ◽  
Douglas Stauffer ◽  
Brian Derby ◽  
Aurora J. Cruz-Cabeza

<div> <div> <div> <p>Single crystals of aspirin form I were cleaved and indented on their dominant face. Upon inspection, it was possible to observe strongly anisotropic shallow lateral cracks due to the extreme low surface roughness after cleavage. Atomic Force Microscopy (AFM) imaging showed spalling fractures nucleating from the indent corners, forming terraces with a height of one or two interplanar spacings d100. The formation of such spalling fractures in aspirin was rationalised using basic calculations of attachment energies, showing how (100) layers are poorly bonded when compared to their relatively higher intralayer bonding. An attempt at explaining the preferential propagation of these fractures along the [010] direction is discussed. </p> </div> </div> </div>


2011 ◽  
Vol 88-89 ◽  
pp. 34-37
Author(s):  
Kuai Ji Cai

The relationship of the friction coefficient and the MTC were discussed, and the MTC and its effects on surface roughness were a theoretical analysised and experimental verification by AFM (atomic force microscope). The results show that the theoretical MTC tends to be minimal value then before the adhering effect to reach remarkable. Appropriate adjustments cutting parameters, the cutting process can always micro-cutting phase to reach the steady-thin chip, and no plowing phenomenon. So the surface residues highly were reduced and higher surface quality was achieved.


2019 ◽  
Vol 56 ◽  
pp. 321-329 ◽  
Author(s):  
Ichiko Misumi ◽  
Kentaro Sugawara ◽  
Ryosuke Kizu ◽  
Akiko Hirai ◽  
Satoshi Gonda

2010 ◽  
Vol 40 (5) ◽  
pp. 294 ◽  
Author(s):  
Ki-Ho Park ◽  
Hyun-Joo Yoon ◽  
Su-Jung Kim ◽  
Gi-Ja Lee ◽  
Hun-Kuk Park ◽  
...  

1999 ◽  
Vol 31 (1-6) ◽  
pp. 203-208 ◽  
Author(s):  
N. Yasuda ◽  
M. Yamamoto ◽  
K. Amemiya ◽  
H. Takahashi ◽  
A. Kyan ◽  
...  

10.2341/05-54 ◽  
2006 ◽  
Vol 31 (4) ◽  
pp. 442-449 ◽  
Author(s):  
B. Tholt ◽  
W. G. Miranda-Júnior ◽  
R. Prioli ◽  
J. Thompson ◽  
M. Oda

Clinical Relevance Ceramic restorations often require intraoral adjustment and the use of a polishing kit is mandatory to re-establish surface smoothness. When the ceramic surface was ground and polished, the 3 types of ceramic restorations reacted differently to each tested polishing kit. Some of the polished surfaces obtained were at least equivalent to glaze-fired ceramic surfaces.


2008 ◽  
Vol 375-376 ◽  
pp. 278-282 ◽  
Author(s):  
Jun Li ◽  
Yong Zhu ◽  
Chuang Tian Chen

Transparent Nd:YAG ceramics which are very hard and brittle materials, are very difficult to be polished. There are many micro scratches or damages on the surface after mechanical polishing with Al2O3. In order to remove micro scratches or damages, chemical mechanical polishing (CMP) was adopted to manufacture Nd:YAG ceramics. In the polishing experiment, Pellon and Chemcloth pads were utilized for chemical mechanical polishing of Nd:YAG ceramics. Colloidal SiO2 was selected as the polishing slurry in two different polishing environments, acidity and alkalinity. The surface roughness was determined by using atomic force microscope. In this study, four polishing experimental combinations that each combination contains one of the two pads and one of the two polishing environments were carried out in the optimum polishing condition. Then the high quality surface of transparent Nd:YAG ceramics with the best surface roughness of < 0.2 nm RMS and few micro scratches or damages is obtained by adopting CMP process with Chemcloth pad and colloidal SiO2 in acidic condition.


Sign in / Sign up

Export Citation Format

Share Document