Modeling of Film Growth in Pulsed Laser Deposition

1995 ◽  
Vol 397 ◽  
Author(s):  
M. Tyunin

ABSTRACTFilm growth in pulsed laser deposition (PLD) is described as a process of sorption of ablated species on the substrate surface. Film growth rate and composition are qualitatively analyzed as a function of laser fluence and ambient gas pressure. As an example, analysis of the film composition is carried out for BiSrCaCuO and PbZrTiO pulsed laser deposited films.

2010 ◽  
Vol 638-642 ◽  
pp. 2921-2926 ◽  
Author(s):  
Tomohiro Yoshitake ◽  
Tsuyoshi Yoshitake ◽  
Kazushi Sumitani ◽  
Ryota Ohtani ◽  
You Nakagawa ◽  
...  

We have previously reported that -AlN crystallites with diameters of 0.5–1 µm were occasionally grown on sapphire(0001) by pulsed laser deposition, which implied that the migration mobility of the species deposited on the substrate surface might be an insufficient for the film growth of -AlN. In the present study, in order to enhance the crystal growth of -AlN, sapphire(0001) substrates with an atomically smoothness (step-sapphire) were employed. The growth conditions of - and -AlN extended to higher nitrogen-pressures, as compared to those using normal surface sapphire(0001) substrates (normal-sapphire). This is due to the enhancement in the mobility of the deposited species on the substrate surface.


2001 ◽  
Vol 695 ◽  
Author(s):  
A.R. Phani ◽  
J.E. Krzanowski ◽  
J.J. Nainaparampil

ABSTRACTCarbon nitride films have been deposited by the reactive pulsed laser deposition technique by ablating carbon in a nitrogen atmosphere at different substrate temperatures and different background pressures of nitrogen. Si(111) and 440C steel substrates were used in the present investigation. Deposited films are uniform and show good adhesion to the substrates. The deposition rates depend on laser fluence, background pressure, and target-substrate distance. The nitrogen concentration in the deposited films increases with increasing background nitrogen gas pressure and laser fluence. Fourier transform infrared spectroscopy has been employed to evaluated CN bonds. X-ray photoelectron spectroscopy has been used to study the composition of the deposited films. X-ray diffraction and atomic force microscopy techniques revealed that the deposited films have an oriented microcrystalline structure after annealing at 900°C with smooth surface. Electronic, mechanical and tribological properties of these films have also been discussed.


2015 ◽  
Vol 49 (4) ◽  
pp. 045201 ◽  
Author(s):  
J Chen ◽  
M Döbeli ◽  
D Stender ◽  
M M Lee ◽  
K Conder ◽  
...  

2008 ◽  
Vol 14 (S3) ◽  
pp. 53-56
Author(s):  
S.A.S. Rodrigues ◽  
A. Khodorov ◽  
M. Pereira ◽  
M.J.M. Gomes

Ferroelectric films with a composition gradient have attracted much attention because of their large polarization offset present in the hysteresis loops. Lead Zirconate Titanate (PZT) films were deposited on Pt/TiO2/SiO2/Si substrates by Pulsed Laser Deposition (PLD) technique, using a Nd:YAG laser (Surelite) with a source pulse wavelength of 1064 nm and duration of 5-7 ns delivering an energy of 320 mJ per pulse and a laser fluence energy about 20 J/cm2. The film growth is performed in O2 atmosphere (0,40 mbar) while the substrate is heated at 600°C by a quartz lamp. Starting from ceramic targets based on PZT compositions and containing 5% mol. of excess of PbO to compensate the lead evaporation during heat treatment, three films with different compositions Zr/Ti 55/45, 65/35 and 92/8, and two types of complex structures were produced. These complex structures are in the case of the up-graded structure (UpG), with PZT (92/8) at the bottom, PZT (65/35) on middle and PZT (55/45) on the top, and for down-graded (DoG) one, that order is reversed.


1998 ◽  
Vol 127-129 ◽  
pp. 496-499 ◽  
Author(s):  
Y.R. Ryu ◽  
S. Zhu ◽  
S.W. Han ◽  
H.W. White ◽  
P.F. Miceli ◽  
...  

2000 ◽  
Vol 655 ◽  
Author(s):  
Masanori Okuyama ◽  
Toshiyuki Nakaiso ◽  
Minoru Noda

AbstractSr2(Ta1划x, Nbx)2O7(STN) ferroelectric thin films have been prepared on SiO2/Si(100) substrates by the pulsed laser deposition (PLD) method. Preferential (110) and (151)-oriented STN thin films are deposited at a low temperature of 600°C in N2O ambient gas at 0.08 Torr. A counterclockwise C-V hysteresis was observed in the metal-ferroelectric-insulator-semiconductor (MFIS) structure using Sr2(Ta0.7, Nb0.3)2O7 on SiO2/Si deposited at 600°C. Memory window in the C-V curve spreads symmetrically towards both positive and negative directions when applied voltage increases and the window does not change in sweep rates ranging from 0.1 to 4.0×103 V/s. The C-V curve of the MFIS structure does not degrade after 1010 cycles of polarization reversal. The gate retention time is about 3.0×103 sec when the voltages and time of write pulse are ±15V and 1.0 sec, respectively, and hold bias was -0.5 V.


Sign in / Sign up

Export Citation Format

Share Document