Uranium-Series Ages of Secondary Uranium Minerals with Applications to the Long-Term Evolution of Spent Nuclear Fuel

1995 ◽  
Vol 412 ◽  
Author(s):  
R. J. Finch ◽  
J. Suksi ◽  
K. Rasilainen ◽  
R. C. Ewing

AbstractUranium-series activity ratios for U(VI) minerals from the Shinkolobwe mine in southern Zaire indicate that these minerals have not experienced significant preferential loss of uranium since their formation more than 100,000 years ago. The minerals examined include rutherfordine, UO2CO3, schoepite, [(UO2)8O2(OH)12]·12H2O, becquerelite, Ca[(UO2)6O4(OH)6]·8H2O, and uranophane, Ca[(UO2)2(SiO3OH)2]·5H2O. No correlation between mineral species and mineral age was evident. The oxidative dissolution of primary uraninite (UO2+x) has maintained ground waters supersaturated with respect to all of the secondary U(VI) minerals, providing an inexhaustible source of dissolved U6+ for mineral formation and growth. As long as uraninite persists in an oxidizing environment, the assemblage of secondary U(VI) phases is determined by local ground water chemistry (including transitory changes), but not necessarily a unidirectional reaction path towards equilibrium with U(VI) minerals of lower solubility. Thus the Shinkolobwe mine displays a complex assemblage of U(VI) minerals that reflects variations in the availability of dissolved elements besides U. Similarly, for a geologic repository exposed to oxidizing waters, the assemblage of corrosion products that will form during the corrosion of spent UO2 fuel is likely to be as complex as mineral assemblages found in natural uranium deposits under similar conditions.

1992 ◽  
Vol 294 ◽  
Author(s):  
Ignasi Casas ◽  
E. Cera ◽  
J. Bruno

ABSTRACTThe time scale of spent fuel dissolution studies is of the order of magnitude of 2 to 10 years, while the performance of a spent fuel repository should be assessed for much longer times (105-106 years). These time scales can be bridged using appropriate natural analogues. Among other important information, the study of natural systems can give insight of which can be the oxidative alteration of spent fuel in granitic environments. However, in studying such systems, thermodynamic and kinetic data of relevant natural solid phases are needed.In this work we present preliminary results of dissolution experiments carried out under oxidizing conditions with selected and well characterized natural samples of the alteration chain of uraninite (i.e., uraninite, schoepite, uranophane).The experiments have been performed using a synthetic granitic groundwater as a leachant, in contact with air and at 25 °C.


1994 ◽  
Vol 353 ◽  
Author(s):  
R.J. Finch ◽  
J. Suksi ◽  
K. Rasilainen ◽  
R.C. Ewing

AbstractUranium-series disequilibria data, in conjunction with petrographic analyses, indicate that the uranyl oxide hydrate becquerelite can persist for hundreds of thousands of years, possibly longer. Becquerelite probably forms continuously as ground water compositions permit and is resistant to U leaching by ground water. On the time scale of interest for the geologic disposal of spent UO2 nuclear fuel, becquerelite is a long-lived sink for uranium in oxidizing, U and Ca-bearing ground waters. Such long-term stability also supports recent solubility experiments that indicate natural becquerelite has a lower solubility product than that determined for synthetic becquerelites.


Author(s):  
Jerzy Narbutt

<p>Recycling of actinides from spent nuclear fuel by their selective separation followed by transmutation in fast reactors will optimize the use of natural uranium resources and minimize the long-term hazard from high-level nuclear waste. This paper describes solvent extraction processes recently developed, aimed at the separation of americium from lanthanide fission products as well as from curium present in the waste. Depicted are novel poly-N-heterocyclic ligands used as selective extractants of actinide ions from nitric acid solutions or as actinide-selective hydrophilic stripping agents.</p>


1984 ◽  
Vol 21 (5) ◽  
pp. 559-566 ◽  
Author(s):  
A. A. Levinson ◽  
C. J. Bland ◽  
J. R. Dean

Disequilibrium studies involving the determination of total U and the activity ratios of 234U/238U and 234U/230Th or activities of 230Th, 226Ra, and 210Pb were carried out on samples from three surficial (generally within 5 m of the surface) uranium deposits in south-central British Columbia that give apparent 234U/230Th ages of 1000–20 000 years. As a result of the young ages, the deposits have not yet reached radioactive secular equilibrium and, therefore, yield very little gamma activity.The deposits formed from groundwaters that leached labile uranium from intermediate to felsic igneous rocks. Two accumulation mechanisms concentrate the uranium: evaporation, and adsorption onto organic matter.The uranium content and the activities of the various daughter nuclides are highly variable within and between the various deposits studied. Some of the variations can be explained in terms of the accumulation processes. In the evaporative process the highest value of uranium and daughter nuclides will be found at the surface, whereas in those deposits in which adsorption is the dominant mechanism these nuclides are found in association with buried organic matter. Under these circumstances, accumulations will be influenced by the flow of groundwater from different sources and also depend on whether daughter nuclides remain immobile or are leached after formation.


2002 ◽  
Vol 90 (9-11) ◽  
Author(s):  
S. Stroes-Gascoyne ◽  
F. King ◽  
J. S. Betteridge ◽  
F. Garisto

SummaryThe long-term stability of spent nuclear fuel under deep geologic repository conditions will be determined mostly by the influence of α-radiolysis, since the dose-rate for α-radiolysis will exceed that for γ/β-radiolysis beyond a fuel age of ∼100 years and will persist for more than 10000 years. Dissolution rates derived from studies with currently available spent fuel include radiolysis effects from γ/β- as well as α-radiolysis. The use of external α-sources and chemically added H


Author(s):  
Edgar C. Buck ◽  
Nancy L. Dietz ◽  
John K. Bates

Direct disposal of spent nuclear fuel (SNF) into the proposed unsaturated geologic repository at Yucca Mountain, NV is being studied at several laboratories, including Argonne National Laboratory. Corrosion tests with SNF are being conducted to understand the long-term behavior of SNF under conditions designed to simulate the unsaturated conditions at the site. The SNF used in this study was the Approved Testing Material (ATM)-106 with a bum-up of 43 MW·d/kg U. A sample of ATM-106 fuel was exposed to dripping simulated groundwater for 271 days; after this time the experiment was terminated and the material removed for further study. Details of the testing methodology have been given by Finn et al.,.Previous attempts to study SNF with TEM have used ion milled samples, in this study we prepared the samples by ultramicrotomy which reduced the radiological hazard substantially.


2003 ◽  
Vol 807 ◽  
Author(s):  
Nicholas R. Smart ◽  
Andrew P. Rance ◽  
Lars O. Werme

ABSTRACTIn Sweden, spent nuclear fuel will be encapsulated in sealed cylindrical canisters, consisting of a ferrous insert and a copper outer container, for disposal in a geologic repository. Ferrous support structures will also be used in the repository, which will be backfilled with bentonite clay. Once any residual oxygen has been consumed, any ferrous material exposed to anoxic groundwater will undergo anaerobic corrosion, liberating hydrogen, forming a magnetite film, and releasing iron ions into the surrounding matrix. In order to characterise these processes the rate of hydrogen generation of steel in bentonite was measured using a barometric gas cell technique. The initial corrosion rates were found to be higher than measured previously in comparable aqueous solutions, but the long-term corrosion rates were similar. Analysis of the bentonite matrix showed that iron produced by corrosion had penetrated into the bentonite matrix, suggesting that ferrous ion exchange had occurred.


2006 ◽  
Vol 985 ◽  
Author(s):  
Christophe Poinssot ◽  
Cécile FERRY ◽  
Arnaud POULESQUEN

AbstractSpent Nuclear Fuel (SNF) source terms are used to define the release rate of radionuclides (RN) in a direct disposal and to assess the performance of this waste form. They classically distinguish between two contributions: (i) the Instant Release Fraction (IRF) of RN which are directly leached when water contacts the fuel, (ii) the slow and long term release of RN which are embedded within the fuel matrix. Recent experimental results bring significant input in our understanding and assessment of both contributions. However, they have not yet been integrated in the definition of the SNF source term. This paper will present the impact on the RN source term of the latest results on the SNF long term evolution and the key remaining scientific issues.


1994 ◽  
Vol 353 ◽  
Author(s):  
Jordi Bruno ◽  
I. Casas ◽  
E Cera ◽  
R. C. Ewing ◽  
R. J. Finch ◽  
...  

AbstractThe long term behaviour of spent nuclear fuel is discussed in the light of recent thermodynamic and kinetic data on mineralogical analogues related to the key phases in the oxidative alteration of uraninite. The implications for the safety assessment of a repository of the established oxidative alteration sequence of the spent fuel matrix are illustrated with Pagoda calculations. The application to the kinetic and thermodynamic data to source term calculations indicates that the appearance and duration of the U(VI) oxyhydroxide transient is critical for the stability of the fuel matrix.


Sign in / Sign up

Export Citation Format

Share Document