Anaerobic Corrosion of Steel in Bentonite

2003 ◽  
Vol 807 ◽  
Author(s):  
Nicholas R. Smart ◽  
Andrew P. Rance ◽  
Lars O. Werme

ABSTRACTIn Sweden, spent nuclear fuel will be encapsulated in sealed cylindrical canisters, consisting of a ferrous insert and a copper outer container, for disposal in a geologic repository. Ferrous support structures will also be used in the repository, which will be backfilled with bentonite clay. Once any residual oxygen has been consumed, any ferrous material exposed to anoxic groundwater will undergo anaerobic corrosion, liberating hydrogen, forming a magnetite film, and releasing iron ions into the surrounding matrix. In order to characterise these processes the rate of hydrogen generation of steel in bentonite was measured using a barometric gas cell technique. The initial corrosion rates were found to be higher than measured previously in comparable aqueous solutions, but the long-term corrosion rates were similar. Analysis of the bentonite matrix showed that iron produced by corrosion had penetrated into the bentonite matrix, suggesting that ferrous ion exchange had occurred.

2000 ◽  
Vol 663 ◽  
Author(s):  
N.R. Smart ◽  
A.E. Bond ◽  
J.A.A. Crossley ◽  
P.C. Lovegrove ◽  
L. Werme

ABSTRACTIn Sweden, it is proposed that spent nuclear fuel should be encapsulated in sealed cylindrical canisters for disposal in a geologic repository. The canisters would consist of a thick ferrous inner container and a copper overpack. If mechanical failure of the copper overpack occurred, allowing water to enter, there would be a build up of ferrous corrosion product, which could induce stresses in the outer copper canister. This paper describes an apparatus, the ‘stress cell’, which was designed to measure the expansion caused by the anaerobic corrosion of steel under compressive loads. The apparatus consisted of a stack of steel and copper discs, which were immersed in simulated anoxic groundwater. A system of levers amplified the change in height of the stack, and the displacement was measured using sensitive transducers. Three cells were set up; two contained alternate mild steel and copper discs, and the third, a control cell, consisted of alternate stainless steel and copper discs. A slight contraction of the control cell was observed but no expansion was measured in the mild steel - copper cells.In parallel, coupons of mild steel and cast iron were corroded in anoxic, artificial groundwater at 50°C and 80°C for several months. The coupons were examined by atomic force microscopy (AFM) to determine the mechanical properties and the structure of the corrosion product films, and X-ray photoelectron spectroscopy (XPS) to identify the chemical composition of the film.


2003 ◽  
Vol 807 ◽  
Author(s):  
Nicholas R. Smart ◽  
Rachel Adams ◽  
Lars Werme

ABSTRACTIn Sweden, spent nuclear fuel will be encapsulated in sealed cylindrical canisters, consisting of a cast iron insert and a copper outer container. The canisters will be placed in a deep geologic repository and surrounded by bentonite. If a breach of the outer copper container were to occur the cast iron insert would undergo anaerobic corrosion, forming a magnetite film whose volume would be greater than that of the base metal. In principle there is a possibility that accumulation of iron corrosion product could cause expansion of the copper canister. Anaerobic corrosion rates are very slow, so in the work described in this paper reference was made to analogous archaeological materials that had been corroding for long periods in natural anoxic aqueous environments. This paper describes a number of archaeological artefacts containing iron and copper corroding in constrained geometries in anoxic natural waters. No evidence has been obtained which would suggest that severe damage is likely to occur to waste canisters as a result of expansive corrosion of cast iron under repository conditions.


2000 ◽  
Vol 663 ◽  
Author(s):  
Allan Hedin ◽  
Ulrik Kautsky ◽  
Lena Morén ◽  
Jan-Olof Selroos ◽  
Patrik Sellin ◽  
...  

ABSTRACTIn preparation for coming site investigations for siting of a deep repository for spent nuclear fuel, the Swedish Nuclear Fuel and Waste Management Company, SKB has carried out the long- term safety assessment SR 97, requested by the Swedish Government. The repository is of the KBS-3 type, where the fuel is placed in isolating copper canisters with a high-strength cast iron insert. The canisters are surrounded by bentonite clay in individual deposition holes at a depth of 500 m in granitic bedrock. Geological data are taken from three sites in Sweden to shed light on different conditions in Swedish granitic bedrock.The future evolution of the repository system is analyzed in the form of five scenarios. The first is a base scenario where the repository is postulated to be built entirely according to specifications and where present-day conditions in the surroundings, including climate, persist. The four other scenarios show the evolution if the repository contains a few initially defective canisters, in the event of climate change, in the event of earthquakes, and in the event of future inadvertent human intrusion.The principal conclusion of the assessment is that the prospects of building a safe deep repository for spent nuclear fuel in Swedish granitic bedrock are very good. The results of the assessment also serve as a basis for formulating requirements and preferences regarding the bedrock in site investigations, for designing a program for site investigations, for formulating functional requirements on the repository's barriers, and for prioritization of research.


2002 ◽  
Vol 757 ◽  
Author(s):  
Yngve Albinsson ◽  
Arvid Ödegaard-Jensen ◽  
Virginia M. Oversby ◽  
Lars O. Werme

ABSTRACTSweden plans to dispose of spent nuclear fuel in a deep geologic repository in granitic rock. The disposal conditions allow water to contact the canisters by diffusion through the surrounding bentonite clay layer. Corrosion of the canister iron insert will consume oxygen and provide actively reducing conditions in the fluid phase. Experiments with spent fuel have been done to determine the dissolution behavior of the fuel matrix and associated fission products and actinides under conditions ranging from inert atmosphere to reducing conditions in solutions. Data for U, Pu, Np, Cs, Sr, Tc, Mo, and Ru have been obtained for dissolution in a dilute NaHCO3 groundwater for 3 conditions: Ar atmosphere, H2 atmosphere, and H2 atmosphere with Fe(II) in solution. Solution concentrations forU, Pu, and Mo are all significantly lower for the conditions that include Fe(II) ions in the solutions together with H2 atmosphere, while concentrations of the other elements seem to be unaffected by the change of atmospheres or presence of Fe(II). Most of the material that initially dissolved from the fuel has reprecipitated back onto the fuel surface. Very little material was recovered from rinsing and acid stripping of the reaction vessels.


Author(s):  
Brent W. A. Sherar ◽  
Peter G. Keech ◽  
Zack Qin ◽  
Fraser King ◽  
David W. Shoesmith ◽  
...  

This paper investigates the long term corrosion behaviour of pretreated carbon steel under alternating anaerobic to aerobic cycles over 238 days. Changes in steel behaviour were observed electrochemically by monitoring the corrosion potential, and calculating changes to corrosion rate from linear polarization resistance. With increasing cycle number the corrosion process becomes localized at a small number of locations, consistent with the formation of tubercles. Periods of aerobic corrosion were associated with more positive potentials (between −500 mV to −350 mV) and high corrosion rates (70 to 120 μm yr−1); whereas anaerobic corrosion yielded more negative potentials (< −650 mV) and lower corrosion rates (40 to 50 μm yr−1). Upon termination of the experiment, corrosion product deposits were characterized by several techniques: scanning electrochemical microscopy to detect morphology; focused ion beam and cross sectioning to judge film thickness and film porosity; and Raman Spectroscopy to identify iron phases.


2002 ◽  
Vol 90 (9-11) ◽  
Author(s):  
S. Stroes-Gascoyne ◽  
F. King ◽  
J. S. Betteridge ◽  
F. Garisto

SummaryThe long-term stability of spent nuclear fuel under deep geologic repository conditions will be determined mostly by the influence of α-radiolysis, since the dose-rate for α-radiolysis will exceed that for γ/β-radiolysis beyond a fuel age of ∼100 years and will persist for more than 10000 years. Dissolution rates derived from studies with currently available spent fuel include radiolysis effects from γ/β- as well as α-radiolysis. The use of external α-sources and chemically added H


Author(s):  
Edgar C. Buck ◽  
Nancy L. Dietz ◽  
John K. Bates

Direct disposal of spent nuclear fuel (SNF) into the proposed unsaturated geologic repository at Yucca Mountain, NV is being studied at several laboratories, including Argonne National Laboratory. Corrosion tests with SNF are being conducted to understand the long-term behavior of SNF under conditions designed to simulate the unsaturated conditions at the site. The SNF used in this study was the Approved Testing Material (ATM)-106 with a bum-up of 43 MW·d/kg U. A sample of ATM-106 fuel was exposed to dripping simulated groundwater for 271 days; after this time the experiment was terminated and the material removed for further study. Details of the testing methodology have been given by Finn et al.,.Previous attempts to study SNF with TEM have used ion milled samples, in this study we prepared the samples by ultramicrotomy which reduced the radiological hazard substantially.


1997 ◽  
Vol 506 ◽  
Author(s):  
E. C. Buck ◽  
R. J. Finch ◽  
P. A. Finn ◽  
J. K. Bates

ABSTRACTUranyl oxide hydrate phases are known to form during contact of oxide spent nuclear fuel with water under oxidizing conditions; however, less is known about the fate of fission and neutron capture products during this alteration. We describe, for the first time, evidence that neptunium can become incorporated into the uranyl secondary phase, dehydrated schoepite (UO3•0.8H2O). Based on the long-term durability of natural schoepite, the retention of neptunium in this alteration phase may be significant during spent fuel corrosion in an unsaturated geologic repository.


1995 ◽  
Vol 412 ◽  
Author(s):  
R. J. Finch ◽  
J. Suksi ◽  
K. Rasilainen ◽  
R. C. Ewing

AbstractUranium-series activity ratios for U(VI) minerals from the Shinkolobwe mine in southern Zaire indicate that these minerals have not experienced significant preferential loss of uranium since their formation more than 100,000 years ago. The minerals examined include rutherfordine, UO2CO3, schoepite, [(UO2)8O2(OH)12]·12H2O, becquerelite, Ca[(UO2)6O4(OH)6]·8H2O, and uranophane, Ca[(UO2)2(SiO3OH)2]·5H2O. No correlation between mineral species and mineral age was evident. The oxidative dissolution of primary uraninite (UO2+x) has maintained ground waters supersaturated with respect to all of the secondary U(VI) minerals, providing an inexhaustible source of dissolved U6+ for mineral formation and growth. As long as uraninite persists in an oxidizing environment, the assemblage of secondary U(VI) phases is determined by local ground water chemistry (including transitory changes), but not necessarily a unidirectional reaction path towards equilibrium with U(VI) minerals of lower solubility. Thus the Shinkolobwe mine displays a complex assemblage of U(VI) minerals that reflects variations in the availability of dissolved elements besides U. Similarly, for a geologic repository exposed to oxidizing waters, the assemblage of corrosion products that will form during the corrosion of spent UO2 fuel is likely to be as complex as mineral assemblages found in natural uranium deposits under similar conditions.


2000 ◽  
Vol 663 ◽  
Author(s):  
N.R. Smart ◽  
P.A.H. Fennell ◽  
R. Peat ◽  
K. Spahiu ◽  
L. Werme

ABSTRACTIn Sweden, it is proposed that spent fuel should be encapsulated in sealed cylindrical canisters for disposal in a geologic repository. The canisters would consist of a thick ferrous inner container and a copper overpack. If mechanical failure of the copper overpack occurred, allowing water to enter, the ferrous inner container would corrode anaerobically and liberate hydrogen. The rate of hydrogen generation due to the anaerobic corrosion of steel in anoxic groundwater has been measured using barometric cells. The aim of the work presented in this paper was to measure the redox potential, Eh and pH in the presence of anaerobically corroding steel, in a barometric cell. Two specially designed barometric cells were constructed. They were equipped with a silver chloride or calomel reference electrode, a gold Eh electrode, a glass electrode, and a steel electrode. The electrodes were allowed to stabilize in anoxic artificial groundwater and then a mass of pickled steel wire was introduced into the test cell. As the wires were added, the redox potential rapidly became more negative due to the rapid consumption of the residual oxygen. The corrosion potential of the steel was stable and a slow drift in pH was observed. The results are compared with the results of geochemical modelling. Extension of the work to investigate the electrochemical parameters in the presence of dissolved uranium species is discussed.


Sign in / Sign up

Export Citation Format

Share Document