Ion Beam Epitaxy of in-situ Er-O Co-Doped Silicon Films

1996 ◽  
Vol 422 ◽  
Author(s):  
Morito Matsuoka ◽  
Shun-Ichi Tohno

AbstractErbium-doped silicon films are grown by ion beam epitaxy (IBE) using an electric-mirror sputtering-type metal ion source in ultrahigh vacuum. In-situ erbium doping with concentrations ranging from 1×1016 to 6×1020 cm−3 is achieved by sputtering the erbium metal pellet with ions extracted from the silicon metal ion source. The oxygen concentration in the films is also controlled in-situ over the range from below 1×1018 to 2×1020 cm−3 by using argon gases containing 1 ppb to 100 ppm of oxygen impurities. The erbium incorporation probability drastically increases (by two or more orders of magnitude) when oxygen is contained in the argon gas during film growth. Erbium is selectively oxidized in the Si host. Erbium segregation and precipitation formation are well suppressed by the oxidation. Sharp and well-split photoluminescence is clearly observed in as-deposited films grown typically at 480°C with oxygen co-doping.

1997 ◽  
Vol 71 (1) ◽  
pp. 96-98 ◽  
Author(s):  
Morito Matsuoka ◽  
Shun-ichi Tohno

Author(s):  
J. S. Maa ◽  
Thos. E. Hutchinson

The growth of Ag films deposited on various substrate materials such as MoS2, mica, graphite, and MgO has been investigated extensively using the in situ electron microscopy technique. The three stages of film growth, namely, the nucleation, growth of islands followed by liquid-like coalescence have been observed in both the vacuum vapor deposited and ion beam sputtered thin films. The mechanisms of nucleation and growth of silver films formed by ion beam sputtering on the (111) plane of silicon comprise the subject of this paper. A novel mode of epitaxial growth is observed to that seen previously.The experimental arrangement for the present study is the same as previous experiments, and the preparation procedure for obtaining thin silicon substrate is presented in a separate paper.


Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


2000 ◽  
Vol 43 (4) ◽  
pp. 564-565
Author(s):  
S. P. Svetlov ◽  
V. Yu. Chalkov ◽  
V. G. Shengurov

1989 ◽  
Vol 157 ◽  
Author(s):  
Wang Xi ◽  
Zhou Jiankun ◽  
Chen Youshan ◽  
Liu Xianghuai ◽  
Zou Shichang

ABSTRACTA Monte-Carlo computer simulation has been performed to describe, at atomic level, the growth of titanium nitride films formed by ion beam enhanced deposition (IBED). The simulation is based on a random target, fixed free path of moving particles and binary collisions. An alternate process of deposition of titanium atoms and implantation of nitrogen ions is applied instead of the actual continuous and synchronous process of IBED. According to the actual conditions, the adsorption of nitrogen gas, which is leaked out from the ion source, at the fresh titanium layer surface has been considered. In addition, the change of the composition profile and the density profile during film growth is taken into account. It is demonstrated that the width of the intermixed region between the film and substrate increases with the increase of the atomic arrival ratio, R, of implanted nitrogen ions to deposited titanium atoms. When the titanium deposition rate is low, the nitrogen concentration of the film is relatively insensitive to R, indicating that a dominant contribution to the nitrogen concentration is derived from the nitrogen gas leaked out from the ion source. The results obtained in this study are in agreement with the experimental measurements.


1992 ◽  
Vol 295 ◽  
Author(s):  
Mikio Takai ◽  
Ryou Mimura ◽  
Hiroshi Sawaragi ◽  
Ryuso Aihara

AbstractA nondestructive three-dimensional RBS/channeling analysis system with an atomic resolution has been designed and is being constructed in Osaka University for analysis of nanostructured surfaces and interfaces. An ultra high-vacuum sample-chamber with a threeaxis goniometer and a toroidal electrostatic analyzer for medium energy ion scattering (MEIS) was combined with a short acceleration column for a focused ion beam. A liquid metal ion source (LMIS) for light metal ions such as Li+ or Be+ was mounted on the short column.A minimum beam spot-size of about 10 nm with a current of 10 pA is estimated by optical property calculation for 200 keV Li+ LMIS. An energy resolution of 4 × 10-3 (AE/E) for the toroidal analyzer gives rise to atomic resolution in RBS spectra for Si and GaAs. This system seems feasible for atomic level analysis of localized crystalline/disorder structures and surfaces.


1985 ◽  
Vol 45 ◽  
Author(s):  
David R Kingham ◽  
Vincent J Mifsud

ABSTRACTA theoretical model of liquid metal ion source (LMIS) operation has been developed by Kingham and Swanson. In this paper we consider beams from LMIS on the basis of this model. In particular we consider properties such as angular intensity, energy spread and relative abundance of differently charged species of the ion beam, and the dependence of these properties on source current and elemental composition. The conclusion is that the brightest focussed beam for a given probe size is attainable at the lowest possible source current as previously stated by Swanson. LMIS sources have an onset current of typically 1-2[A and will not operate stably below this current, thus limiting the maximum focussed ion beam brightness. The physical reason for this is discussed. The relevance of these properties to fine focussed ion beam applications, particularly semiconductor processing, is discussed. Useful, and in some cases unique, device manufacturing techniques can be postulated using one or more of the momentum, energy or atomic addition properties inherant tothis type of system. Advanced research tools are discussed, together with some examples of the use of microfocussed ion beams with probe sizes down to less than 50nm. Immediate applications include: high resolution ion imaging and SIMS microanalysis; ion beam machining and microfabrication; ion beam resist exposure and ion beam mask repair.


Sign in / Sign up

Export Citation Format

Share Document