Novel Multiferroic Lead-Free BaTiO3/FeBSi Composite Films

2010 ◽  
Vol 123-125 ◽  
pp. 157-160
Author(s):  
Zhen Zhen Zhou ◽  
Deng Lu Hou ◽  
Li Ma ◽  
Cong Mian Zhen

“Green” multiferroic BaTiO3/FeBSi composite films were grown by pulsed laser deposition and ion beam sputtering on general Pt/Ti/SiO2/Si substrates. Room temperature X-ray diffraction and Raman scattering show that the crystal structures of BaTiO3 and FeBSi are tetragonal and amorphous, respectively, and no additional or intermediate phase peaks appears in the composite films. A cross-sectional scanning electron microscopy image clearly demonstrates a 2-2 type structure with sharp interface between the top FeBSi layer and bottom BaTiO3 layer. The magnetic properties of the top FeBSi are obviously modified by the bottom BaTiO3. The composite films show obvious ferroelectric feature.

1996 ◽  
Vol 441 ◽  
Author(s):  
Tai D. Nguyen ◽  
Alison Chaiken ◽  
Troy W. Barbee

AbstractMicrostructural development of Fe and Cu in Cu/Fe multilayers of layer thickness 1.5–10 nm prepared on Si, Ge, and MgO substrates by ion beam sputtering has been studied using x-ray diffraction and cross-sectional transmission electron microscopy (TEM). High-angle x-ray results show an fcc Cu structure and a distorted bcc structure in the Fe layers at 5 nm-layer-thickness and smaller, and bcc Fe (110) and fcc Cu (111) peaks in the 10 nm-layer-thickness samples. Lowangle x-ray diffraction indicates that the layers in the samples grown on MgO substrates have a more uniform and smooth layered structure than the multilayers grown on Si and Ge substrates, which results from larger grains in the MgO substrate samples for the same layer thickness. Relationships among growth, microstructure, and interfaces with layer thickness are discussed.


2018 ◽  
Vol 60 (5) ◽  
pp. 1005
Author(s):  
В.А. Терехов ◽  
Д.С. Усольцева ◽  
О.В. Сербин ◽  
И.Е. Занин ◽  
Т.В. Куликова ◽  
...  

AbstractThe peculiarities of the phase composition and electronic structure of aluminum–silicon composite films near the Al_0.75Si_0.25 composition obtained by the magnetron and ion-beam sputtering methods on a Si(100) silicon substrate are studied using the X-ray diffraction techniques and ultrasoft X-ray emission spectroscopy. In addition to silicon nanocrystals of about 25 nm in size, an ordered solid solution corresponding to the previously unknown Al_3Si phase is formed in magnetron sputtering on a polycrystalline Al matrix. Films obtained by ion-beam sputtering of the composite target are found to be monophasic and contained only one phase of an ordered solid solution of aluminum silicide Al_3Si of the Pm3m cubic system with the primitive cell parameter a = 4.085 Å. However, subsequent pulsed photon annealing of the composite with different radiation doses from 145 to 216 J/cm^2 gives rise to the partial decomposition of the Al_3Si phase with the formation of free metallic aluminum and silicon nanocrystals with sizes in the range from 50 to 100 nm, depending on the pulsed photon radiation dose.


2010 ◽  
Vol 63 ◽  
pp. 392-395
Author(s):  
Yoshifumi Aoi ◽  
Satoru Furuhata ◽  
Hiromi Nakano

ZrN/TiN multi-layers were synthesized by ion beam sputtering technique. Microstructure and mechanical property of the ZrN/TiN multi-layers were characterized and the relationships between microstructure and hardness of the ZrN/TiN multi-layers with various bilayer thicknesses and thickness ratios were investigated. The microstructure of multi-layers have been investigated using transmission electron microscope (TEM) and X-ray diffraction (XRD).


1986 ◽  
Vol 74 ◽  
Author(s):  
B. Park ◽  
F. Spaepen ◽  
J. M. Poate ◽  
D. C. Jacobson

AbstractArtificial amorphous Si/Ge multilayers of equiatomic average composition with a repeat length around 60 Å have been prepared by ion beam sputtering. Implantation with 29Si led to a decrease in the intensity of the X-ray diffraction peaks arising from the composition modulation, which could be used for an accurate measurement of the implantation-induced mixing distance. Subsequent annealing showed no difference between the interdiffusivity in an implanted and unimplanted sample.


1991 ◽  
Vol 229 ◽  
Author(s):  
Steven M. Hues ◽  
John L. Makous

AbstractA softening of the shear elastic constant c44 has been observed previously in Mo/Ni superlattices as a function of decreasing bilayer thickness below approximately 100 Å.[1] We have prepared a series of Mo/Ni superlattice films by ion beam sputtering doped with varying concentrations of either aluminum or oxygen. The chemical and structural properties of these films were then determined using x-ray diffraction (XRD) and Auger electron spectroscopy (AES). The shear elastic properties were characterized by measuring the surface acoustic wave (SAW) velocity of the deposited films. We demonstrate structural and elastic property effects resulting from Al and O impurity incorporation in Mo/Ni multilayers.


1993 ◽  
Vol 316 ◽  
Author(s):  
W. A. Lewis ◽  
M. Farle ◽  
B. M. Clemens ◽  
R. L. White

ABSTRACTWe report the results of our microstructural investigations into the origin of in-plane uniaxial magnetic anisotropies induced in Ni and Fe thin films by low energy ion beam assisted deposition. 1000 Å films were prepared by ion beam sputtering onto amorphous silica substrates under simultaneous bombardment by 100 eV Xe+ ions under an oblique angle of incidence. The induced anisotropy is studied as a function of ion-to-adsorbate atom arrival ratio, R, from values of 0 to 0.35. The maximum anisotropy field is 150 Oe for Ni and 80 Oe for Fe, but their hard axes are oriented orthogonal to each other. Asymmetric x-ray diffraction is employed to study both in-plane and out-of-plane lattice spacings and crystallographic orientation. In agreement with previous work, we find evidence of a anisotropic in-plane strain of magnitude 0.2-0.5%. In all films, the direction perpendicular to the ion bombardment is compressed relative to parallel. The uniaxial magnetic anisotropy is correlated with this in-plane anisotropic strain using a simple magnetoelastic model.


1991 ◽  
Vol 243 ◽  
Author(s):  
B.E. Cole ◽  
R.D. Horning ◽  
P.W. Kruse

AbstractThin films, 0.2 μm to 2 μm thick, of ferroelectric PbTiO3 have been deposit ed on Pt coated Si wafers using a novel dual target ion beam sputtering technique. The sputtering targets of PbO and Ti are shuttled back and forth into a Xe ion beam, depositing very thin (10 - 15 Å) alternating layers of PbO and TiO2. The substrate is heated in situ, allowing interdiffusion of the thin layers into a homogeneous PbTiO3 film. Film composition can be controlled accurately and repeatably by controlling the ratio of the sputtering times from each target. Structural characteristics were analyzed by x-ray diffraction, Rutherford backscattering as a function of the sputtering time ratio and the deposition temperature on Pt and Si3N4 coated Si substrates. The stoichiometric PbTiO3 films have a tetragonal perovskite structure with a slight c-axis preference. Capacitor structures show ferroelectric hysterisis loops, dielectric constants of 100-250, loss tangents between 0.002 and 0.04 and a pyroelectric coefficient greater than 5 x 10−8 C/cm2 °C.


Author(s):  
Evelina Domashevskaya ◽  
Vladimir Terekhov ◽  
Igor Zanin ◽  
Konstantin Barkov

Metastable phases such as Al3Si can form in Al-Si composite films obtained by magnetron and ion-beam sputtering. In this work, we investigated the stability region of the Al3Si phase depending on the composition of the ion-beam AlxSi1-x films. Using X-ray diffraction and Ultrasoft X-ray Emission Spectroscopy, an ordered Al3Si solution with a primitive unit cell of the cubic system Pm3m and a lattice parameter of 4.085 Å was found in Al1-xSix ionbeam films. Studies have shown that the long-range order is quite resistant to changes in the elemental composition.


2007 ◽  
Vol 556-557 ◽  
pp. 713-716 ◽  
Author(s):  
Yu Cao ◽  
S. Alfonso Pérez-García ◽  
Lars Nyborg

This study deals with the interfacial reactions and electrical properties of Ta/4H-SiC contacts. Tantalum thin films (~100 nm) were deposited onto SiC wafer at room temperature by argon ion beam sputtering. The samples were then heated in high vacuum at 650°C, 800°C or 950°C for 30 min. X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (XRD), Auger electron spectroscopy (AES) and current-voltage (I-V) technique were used for characterising the samples. Ohmic contact is formed in the studied samples after annealing at or above 800°C even though considerable amount of metallic Ta still exists. The reaction zone possesses a layered structure of Ta2C/Ta2C+Ta5Si3/SiC. High enough temperature is needed to provide for sufficient interface change to tailor the contact properties.


Sign in / Sign up

Export Citation Format

Share Document