Emission Mechanism of the InGaN MQW Grown by MOCVD

1996 ◽  
Vol 449 ◽  
Author(s):  
Yukio Narukawa ◽  
Yoichi Kawakami ◽  
Shizuo Fujita ◽  
Shigeo Fujita ◽  
Shuji Nakamura

ABSTRACTDynamical behavior of radiative recombination has been assessed in the In0.20Ga0.80N (3nm)/In0.05Ga0.95N (6 nm) multiple quantum well (MQW) structure by means of transmittance (TR), electroreflectance (ER), photoluminescence excitation (PLE) and time-resolved photoluminescence (TRPL) spectroscopy. The PL at 20 K was mainly composed of two emission bands whose peaks are located at 2.920 eV and 3.155 eV. The ER and PLE revealed that the transition at 3.155 eV is due to the excitons at quantized level between n=1 conduction and n=1 A(Γ9υ) valence bands, while the main PL peak at 2.920 eV is attributed to the excitons localized at the trap centers within the well. The TRPL features were well understood as the effect of localization where photo-generated excitons are transferred from the n=1 band to the localized centers, and then are localized further to the tail state. The origin of the localized centers were attributed to the In-rich region in the wells acting as quantum dots which could be observed by transmission electron microscopy (TEM) and energy-dispersive X-ray microanalysis (EDX).

Author(s):  
A.N. Cartwright ◽  
Paul M. Sweeney ◽  
Thomas Prunty ◽  
David P. Bour ◽  
Michael Kneissl

The presence of piezoelectric fields within p-i-n GaN/InGaN multiple quantum well structures is discussed. Time integrated and time-resolved photoluminescence measurements and theoretical calculations of the effect of these fields is presented. Furthermore, a description of how these fields influence the carrier dynamics and a discussion of how the piezoelectric field effects the design of GaN/InGaN devices is presented.


MRS Advances ◽  
2018 ◽  
Vol 3 (14) ◽  
pp. 733-739 ◽  
Author(s):  
Seyma Dadı ◽  
Yemliha Altıntas ◽  
Emre Beskazak ◽  
Evren Mutlugun

ABSTRACTWe propose and demonstrate the photoluminescence enhancement of CsPbBr3 perovskite quantum dot films in the presence of Au nanoparticles. Embedded into a polymer matrix, Au nanoparticle- quantum dot film assemble prepared by an easy spin coating method enabled the photoluminescence enhancement of perovskite quantum dot films up to 78%. The properties of the synthesized perovskite QDs and gold nanoparticles have been analysed using high resolution transmission electron microscopy, X-ray diffraction, energy dispersive X- ray spectroscopy, UV-Vis absorption spectrophotometer, steady state and time-resolved photoluminescence spectrometer.


1993 ◽  
Vol 326 ◽  
Author(s):  
Xuelong Cao ◽  
Ahn Goo Choo ◽  
L. M. Smith ◽  
Howard E. Jackson ◽  
P. Chen ◽  
...  

2011 ◽  
Vol 109 (12) ◽  
pp. 124906 ◽  
Author(s):  
S. M. O’Malley ◽  
P. Revesz ◽  
A. Kazimirov ◽  
A. A. Sirenko

Sign in / Sign up

Export Citation Format

Share Document