Controlling Defects in Double-Layer Cuprates by Chemical Modifications

1996 ◽  
Vol 453 ◽  
Author(s):  
P. A Salvador ◽  
K. B. Greenwood ◽  
K. Otzschi ◽  
J. W Koenitzer ◽  
B. M. Dabrowski ◽  
...  

AbstractIn-situ high temperature electrical conductivity and thermopower have been measured simultaneously on a number of ordered perovskite-like oxides containing double CUO4/2 sheets. Equilibrium measurements have been conducted as a function of oxygen partial pressure, temperature and chemical substitution in order to understand the relationships between the chemical architecture and the transport and defect properties. Data for LaBa2Cu2NbO8 and LaCa2Cu2GaO7 are presented and compared with those of known triple perovskite superconductors, Y1−xCaxSr2Cu2GaO7 and YBa2Cu3O7−δ, and several quadruple perovskites, Ln′Ln″Ba2Cu2M2O11 (Ln = Lanthanide, Y; M = Sn, Ti). These materials belong to a general family of superconductors which are constructed from similar ‘active’ layers (double perovskite blocks of square-pyramidal copper-oxygen sheets), and interleaved with fixed valence cations in perovskite-like ‘conditioning’ layers. Similarities in the transport properties of the non-superconducting and superconducting materials at elevated temperatures are illustrated, and the amount and types of defects, including carrier concentrations, are correlated with the internal chemistry and inner architecture of each material.

1991 ◽  
Vol 6 (10) ◽  
pp. 2054-2058 ◽  
Author(s):  
B-S. Hong ◽  
T.O. Mason

Via in situ electrical property measurements (conductivity, Seebeck coefficient) over the temperature range 500–800 °C and oxygen partial pressure range 10−4-1 atm, the equilibrium transport properties and stability range of YBa2Cu4O8 were determined. YBa2Cu4O8 behaves like the intrinsically mixed-valent compound, magnetite (Fe3O4), with small variations in electrical properties with changes in oxygen partial pressure. The decomposition boundary to YBa2Cu3O6+y (or YBa2Cu3.5O7.5±z) and CuO occurs at log(po2, atm) = −1.24 × 104/T(K) + 11.01(773 ⋚ T(K) ⋚ 1073).


2002 ◽  
Vol 756 ◽  
Author(s):  
Huankiat Seh ◽  
Harry Tuller ◽  
Holger Fritze

ABSTRACTThe performance of the langasite-based crystal microbalance is limited due to reductions in its resistivity at high temperatures and reduced oxygen partial pressures. In this work, we utilize a recently developed defect model to predict the dependence of the ionic and electronic contributions to the total conductivity of langasite on temperature, oxygen partial pressure and acceptor and donor dopants. These results are used to select the type and concentrations of dopants expected to provide extended operating conditions for langasite-based gas sensors and crystal microbalances.


2002 ◽  
Vol 17 (5) ◽  
pp. 1213-1219 ◽  
Author(s):  
Jeong-Oh Hong ◽  
Han-Ill Yoo

The effective valence,of mobile cations (Fe2+, Fe3+) in semiconducting Fe3O4was determined at elevated temperatures via Tubandt-type electrotransport experiments in association with the literature data on the cation diffusivity and total electrical conductivity. It has been found that the value forvaries systematically from below 2 up to 3 with oxygen partial pressure at a fixed temperature. The effective valence is determined not only by the mobility difference of Fe2+and Fe3+ionsbut also by the cross effect between the cations and electrons upon their transfer. A value ofbetween 2 and 3 may be attributed to the mobility difference between Fe2+and Fe3+ions even in the absence of the cross effect, but the values of< 2 clearly indicate that the cross effect is in play in Fe3O4.


1999 ◽  
Vol 604 ◽  
Author(s):  
C. Voisard ◽  
P. Duran Martin ◽  
D. Damjanovic ◽  
N. Settier

AbstractHysteresis free and linear piezoelectric behavior of SrBi4Ti4O15 (SrBIT) is very promising for precise sensors/actuators devices. Despite a quite low longitudinal piezoelectric coefficient (around 15 pC/N), its elevated ferroelectric phase transition temperature (540°C) allows its use above 300°C. Electrical conductivity at such temperatures should be kept as low as possible in order to avoid loss of piezoelectric properties or charge drifts. Under reducing conditions, however, the electrical conductivity may change considerably. The electrical conductivity of SrBi4Ti4O15 (SrBIT) has been measured under controlled oxygen partial pressure at elevated temperatures (700-900°C) from 1 atm down to 10−15atm. From 1 atm down to 10−15 atm pO2, above 700°C, the conductivity of SrBIT exhibits a -1/4 slope in log-log scale indicating n-type conductivity and an impurity controlled oxygen vacancy concentration. A conductivity minimum is observed around 0.2 atm for undoped SrBIT at 800°C. Acceptor doping (Mn) raises the minimum and flattens the conductivity curve with slope around -1/10 at 700°C, and -1/6 at 900°C. Ionic conductivity and defect ionization are discussed to account for this. Preliminary results indicate the possibility of a large, pO2 independent, region, down to 10−15atm pO2. The ionic transport number was found to be 0.42 at 800°C for undoped SrBIT and 0.75 for Mn doped SrBIT. The activation energies of undoped (1.35 eV) and Mn doped (1.44 eV) samples are close to each other as expected for a common mechanism


1994 ◽  
Vol 369 ◽  
Author(s):  
Igor Kosacki ◽  
Harry L. Tuller

The results of electrical conductivity measurements on Nb, W, and Mn-doped Gd2Ti2O7 are presented. A correlation between electrical conductivity, the oxygen partial pressure and type of dopants has been obtained. The source of the different PO2 dependence for Mn-doped material is discussed.


2005 ◽  
Vol 475-479 ◽  
pp. 1333-1336 ◽  
Author(s):  
Jan Ji Sha ◽  
J.S. Park ◽  
Tatsuya Hinoki ◽  
Akira Kohyama ◽  
J. Yu

Three kinds of atmospheres (air, highly-pure Ar and ultra highly-pure Ar gas) with different oxygen partial pressures were applied to investigate the tensile properties and creep behavior of SiC fibers such as Hi-NicalonTM and TyrannoTM-SA. These fibers were annealed and crept at elevated temperatures ranging from1273-1773 K in such environments. After annealing at 1773 K, the room temperature tensile strengths of SiC-based fibers decreased with decreasing the oxygen partial pressure and the near stoichiometric fiber TyrannoTM-SA shows excellent strength retention. At temperatures above the 1573 K, the creep resistance of SiC fibers evaluated by bending stress relaxation (BSR) method under high oxygen partial pressure was lower than that of in low oxygen partial pressure. The microstructural features on these fibers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD).


2021 ◽  
Author(s):  
Eliot Woods ◽  
Alexandra Berl ◽  
Leanna Kantt ◽  
Michael Wasielewski ◽  
Brandon E. Haines ◽  
...  

π-Conjugated polymers can serve as active layers in flexible and lightweight electronics, and are conventionally synthesized by transition-metal-mediated polycondensation at elevated temperatures. We recently reported a photopolymerization of electron-deficient heteroaryl Grignard monomers that enables the catalyst-free synthesis of n-type π-conjugated polymers. Herein we provide an experimental and computational investigation of the mechanism of this photopolymerization. Spectroscopic studies performed <i>in situ</i> and after quenching reveal that the propagating species is a radical anion with halide end groups. DFT calculations for model oligomers suggest a Mg-templated S<sub>RN</sub>1-type coupling, in which Grignard monomer coordination to the radical anion chain avoids the formation of free sp<sup>2</sup> radicals and enables C–C bond formation with very low barriers. We find that light plays an unusual role in the reaction, photoexciting the radical anion chain to shift electron density to the termini and thus favor productive monomer binding.


2000 ◽  
Vol 64 (2) ◽  
pp. 255-266 ◽  
Author(s):  
J. J. Reece ◽  
S. A. T. Redfern ◽  
M. D. Welch ◽  
C. M. B. Henderson

AbstractThe crystal structure of a manganoan cummingtonite, composition [M4](Na0.13Ca0.41Mg0.46Mn1.00) [M1,2,3](Mg4.87Mn0.13)(Si8O22)(OH)2, (Z = 2), a = 9.5539(2) Å, b = 18.0293(3) Å, c = 5.2999(1) Å, β = 102.614(2)° from Talcville, New York, has been refined at high temperature using in situ neutron powder diffraction. The P21/m to C2/m phase transition, observed as spontaneous strains +ε1 = −ε2, occurs at ˜107°C. Long-range disordering between Mg2+ and Mn2+ on the M(4) and M(2) sites occurs above 550°C. Mn2+ occupies the M(4) and M(2) sites preferring M(4) with a site-preference energy of 24.6±1.5 kJ mol−1. Disordering induces an increase in XMnM2 and decrease in XMnM4 at elevated temperatures. Upon cooling, the ordered states of cation occupancy are ‘frozen in’ and strains in lattice parameters are maintained, suggesting that re-equilibration during cooling has not taken place.


Sign in / Sign up

Export Citation Format

Share Document