Electrical Conductivity Prediction in Langasite for Optimized Microbalance Performance at Elevated Temperatures

2002 ◽  
Vol 756 ◽  
Author(s):  
Huankiat Seh ◽  
Harry Tuller ◽  
Holger Fritze

ABSTRACTThe performance of the langasite-based crystal microbalance is limited due to reductions in its resistivity at high temperatures and reduced oxygen partial pressures. In this work, we utilize a recently developed defect model to predict the dependence of the ionic and electronic contributions to the total conductivity of langasite on temperature, oxygen partial pressure and acceptor and donor dopants. These results are used to select the type and concentrations of dopants expected to provide extended operating conditions for langasite-based gas sensors and crystal microbalances.

2005 ◽  
Vol 475-479 ◽  
pp. 1333-1336 ◽  
Author(s):  
Jan Ji Sha ◽  
J.S. Park ◽  
Tatsuya Hinoki ◽  
Akira Kohyama ◽  
J. Yu

Three kinds of atmospheres (air, highly-pure Ar and ultra highly-pure Ar gas) with different oxygen partial pressures were applied to investigate the tensile properties and creep behavior of SiC fibers such as Hi-NicalonTM and TyrannoTM-SA. These fibers were annealed and crept at elevated temperatures ranging from1273-1773 K in such environments. After annealing at 1773 K, the room temperature tensile strengths of SiC-based fibers decreased with decreasing the oxygen partial pressure and the near stoichiometric fiber TyrannoTM-SA shows excellent strength retention. At temperatures above the 1573 K, the creep resistance of SiC fibers evaluated by bending stress relaxation (BSR) method under high oxygen partial pressure was lower than that of in low oxygen partial pressure. The microstructural features on these fibers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD).


1990 ◽  
Vol 209 ◽  
Author(s):  
Elizabeth J. Opila ◽  
Harry L. Tuller

ABSTRACTThe equilibrium oxygen stoichiometry of La2−xSrxCuO4±y (x=O, 0.2, 0.4, and 1.0) has been determined by TGA at temperatures between 800 and 1050°C and oxygen partial pressures between 1 and 10−4 atmospheres. The changes in oxygen content with temperature, oxygen partial pressure, and strontium concentration are evaluated in terms of a defect model.


2002 ◽  
Vol 17 (5) ◽  
pp. 1213-1219 ◽  
Author(s):  
Jeong-Oh Hong ◽  
Han-Ill Yoo

The effective valence,of mobile cations (Fe2+, Fe3+) in semiconducting Fe3O4was determined at elevated temperatures via Tubandt-type electrotransport experiments in association with the literature data on the cation diffusivity and total electrical conductivity. It has been found that the value forvaries systematically from below 2 up to 3 with oxygen partial pressure at a fixed temperature. The effective valence is determined not only by the mobility difference of Fe2+and Fe3+ionsbut also by the cross effect between the cations and electrons upon their transfer. A value ofbetween 2 and 3 may be attributed to the mobility difference between Fe2+and Fe3+ions even in the absence of the cross effect, but the values of< 2 clearly indicate that the cross effect is in play in Fe3O4.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1888 ◽  
Author(s):  
Thomas Stöcker ◽  
Ralf Moos

Oxide-based materials are promising candidates for use in high temperature thermoelectric generators. While their thermoelectric performance is inferior to commonly used thermoelectrics, oxides are environmentally friendly and cost-effective. In this study, Cu-based delafossites (CuFeO2), a material class with promising thermoelectric properties at high temperatures, were investigated. This work focuses on the phase stability of CuFeO2 with respect to the temperature and the oxygen partial pressure. For this reason, classical material characterization methods, such as scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, were combined in order to elucidate the phase composition of delafossites at 900 °C at various oxygen partial pressures. The experimentally obtained results are supported by the theoretical calculation of the Ellingham diagram of the copper–oxygen system. In addition, hot-stage X-ray diffraction and long-term annealing tests of CuFeO2 were performed in order to obtain a holistic review of the phase stability of delafossites at high temperatures and varying oxygen partial pressure. The results support the thermoelectric measurements in previous publications and provide a process window for the use of CuFeO2 in thermoelectric generators.


1998 ◽  
Vol 548 ◽  
Author(s):  
Carlos Navas ◽  
Harry L. Tuller ◽  
Hans-Conrad zur Loye

ABSTRACTA series of doped Ruddlesden-Popper phases, of general formula Sr3Ti2−xMxO7−δ (M=Al, Ga, Co), were synthesized and their electrical conductivity characterized as a function of temperature and oxygen partial pressure. For fixed-valent dopants, p-type conductivity predominates at p(O2)>10−5 atm, followed by a p(O2)-independent electrolytic regime, and n-type electronic conductivity at very low p(O2). The electrolytic regime exhibits activation energies in the range 1.7-1.8 eV. Doping with transition metals such as Co results in a very significant increase in total conductivity with a p-type conductivity at high p(O2). Furthermore, an apparent ionic regime at intermediate p(O2) is observed, characterized by high conductivity (>10−2 S/cm at 700 °C) and low activation energy (0.7 eV). This interpretation is consistent with iodometric measurements as interpreted by a defect chemical model. Other measurements are in progress to confirm this conclusion.


1999 ◽  
Vol 604 ◽  
Author(s):  
C. Voisard ◽  
P. Duran Martin ◽  
D. Damjanovic ◽  
N. Settier

AbstractHysteresis free and linear piezoelectric behavior of SrBi4Ti4O15 (SrBIT) is very promising for precise sensors/actuators devices. Despite a quite low longitudinal piezoelectric coefficient (around 15 pC/N), its elevated ferroelectric phase transition temperature (540°C) allows its use above 300°C. Electrical conductivity at such temperatures should be kept as low as possible in order to avoid loss of piezoelectric properties or charge drifts. Under reducing conditions, however, the electrical conductivity may change considerably. The electrical conductivity of SrBi4Ti4O15 (SrBIT) has been measured under controlled oxygen partial pressure at elevated temperatures (700-900°C) from 1 atm down to 10−15atm. From 1 atm down to 10−15 atm pO2, above 700°C, the conductivity of SrBIT exhibits a -1/4 slope in log-log scale indicating n-type conductivity and an impurity controlled oxygen vacancy concentration. A conductivity minimum is observed around 0.2 atm for undoped SrBIT at 800°C. Acceptor doping (Mn) raises the minimum and flattens the conductivity curve with slope around -1/10 at 700°C, and -1/6 at 900°C. Ionic conductivity and defect ionization are discussed to account for this. Preliminary results indicate the possibility of a large, pO2 independent, region, down to 10−15atm pO2. The ionic transport number was found to be 0.42 at 800°C for undoped SrBIT and 0.75 for Mn doped SrBIT. The activation energies of undoped (1.35 eV) and Mn doped (1.44 eV) samples are close to each other as expected for a common mechanism


1996 ◽  
Vol 453 ◽  
Author(s):  
P. A Salvador ◽  
K. B. Greenwood ◽  
K. Otzschi ◽  
J. W Koenitzer ◽  
B. M. Dabrowski ◽  
...  

AbstractIn-situ high temperature electrical conductivity and thermopower have been measured simultaneously on a number of ordered perovskite-like oxides containing double CUO4/2 sheets. Equilibrium measurements have been conducted as a function of oxygen partial pressure, temperature and chemical substitution in order to understand the relationships between the chemical architecture and the transport and defect properties. Data for LaBa2Cu2NbO8 and LaCa2Cu2GaO7 are presented and compared with those of known triple perovskite superconductors, Y1−xCaxSr2Cu2GaO7 and YBa2Cu3O7−δ, and several quadruple perovskites, Ln′Ln″Ba2Cu2M2O11 (Ln = Lanthanide, Y; M = Sn, Ti). These materials belong to a general family of superconductors which are constructed from similar ‘active’ layers (double perovskite blocks of square-pyramidal copper-oxygen sheets), and interleaved with fixed valence cations in perovskite-like ‘conditioning’ layers. Similarities in the transport properties of the non-superconducting and superconducting materials at elevated temperatures are illustrated, and the amount and types of defects, including carrier concentrations, are correlated with the internal chemistry and inner architecture of each material.


1994 ◽  
Vol 369 ◽  
Author(s):  
Igor Kosacki ◽  
Harry L. Tuller

The results of electrical conductivity measurements on Nb, W, and Mn-doped Gd2Ti2O7 are presented. A correlation between electrical conductivity, the oxygen partial pressure and type of dopants has been obtained. The source of the different PO2 dependence for Mn-doped material is discussed.


1986 ◽  
Vol 71 ◽  
Author(s):  
G.J. Van Der Kolk ◽  
M.J. Verkerk

AbstractAl was evaporated at oxygen partial pressures, PO2, varying between 10−7 and 10−4 Pa on substrates of silicon nitride. The substrate temperature was varied between 20 °C and 250°C. The films were annealed at temperatures up to 500°C.For Al films deposited at 20°C, it was found that the average grain size decreases with increasing oxygen partial pressure. After annealing recrystallization was observed. The relative increase of grain size was less for higher values of pO2. Annealing gave rise to a broad grain size distribution.For Al films deposited at 250°C, the presence of oxygen caused the growth of rough inhomogeneous films. This inhomogeneous structure remained during annealing.


1998 ◽  
Vol 13 (12) ◽  
pp. 3580-3586 ◽  
Author(s):  
A. L. Crossley ◽  
J. L. MacManus-Driscoll

A detailed study has been made of the control and optimization of partial melting of dipcoated Bi2Sr2Ca1Cu2O8+δAg0.1 (Bi-2212) tapes using reduced oxygen partial pressures. A coulometric titration technique has been employed to vary the oxygen partial pressure in a region of the phase diagram corresponding to binary melting, and the amount of partial melting has been quantified. Using this information, tapes have been processed using both isothermal and isobaric techniques. An optimum processing route was determined which combined isothermal and isobaric processes. Highly aligned material at the point of optimum melting was obtained.


Sign in / Sign up

Export Citation Format

Share Document