Processing, X-Ray, and TEM Studies of QS87 Series 56 KΩ/Square Thick Film Resistors

1996 ◽  
Vol 457 ◽  
Author(s):  
Gary M. Crosbie ◽  
Frank Johnson ◽  
William T. Donlon

ABSTRACTThick film resistors are glass/metal oxide nanocomposites used in hybrid microcircuits. These components have a small temperature coefficient of resistance that is useful in systems that experience a wide range of service temperatures. Test samples were produced by printing, drying, and firing resistor pastes in a laboratory process that simulated production conditions. The process parameters of peak firing temperature, time at peak temperature, and probe current were factors in a 23 factorial experiment that measured in-situ resistance (resistance during processing), as-fired resistance, and the temperature coefficients of resistance. As-fired resistance is shown to increase with firing time and temperature. In-situ resistance exhibited a small decrease with increasing firing temperature due to thermally-activated glass conduction at firing temperatures. The temperature coefficient of resistance measurements show that R[T] curve flattens with increasing firing time and temperature. X-ray diffraction revealed Pb-ruthenate, alumina, and Zr-silicate phases to be dispersed in the glass. Transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy revealed that the conductive phases, Pb- and CuBi-ruthenate particles, increased in size with increasing firing time and temperature. Lattice parameter measurements revealed only a small increase in the ruthenate structure. Resistance changes are attributed to increased separation of the conductive ruthenate particles by coarsening.

Circuit World ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tomasz Matusiak ◽  
Arkadiusz Dabrowski ◽  
Leszek Golonka

Purpose The purpose of this paper is to present the properties of thick-film resistors made of novel pastes prepared from glass and graphite. Design/methodology/approach Graphite-based resistors were made of thick-film pastes with different graphite-to-glass mass fraction were prepared and examined. Sheet resistance, temperature coefficient of resistance, impact of humidity and short-term overload were investigated. The properties of the layers fired in atmospheres of air at 550°C and nitrogen at 875°C were compared. Findings Graphite-based resistors with various graphite-to-glass ratios made possible to obtain a wide range of sheet resistance from single O/square to few kO/square. These values were dependent on firing atmosphere, paste composition and the number of screen-printed layers. The samples made of paste with 1:1 graphite-to-glass ratio exhibited the temperature coefficient of resistance of about −1,000 ppm/°C, almost independently on the firing atmosphere and presence of a top coating. The resistors fired in the air after coating with overglaze, exhibited significantly lower sheet resistance, reduced impact of humidity and improved power capabilities. Originality/value In this paper, graphite-based resistors for applications in typical high-temperature cermet thick-film circuits were presented, whereas typical graphite-based resistors were fabricated in polymer thick-film technology. Owing to very low cost of the graphite, the material is suitable for low-power passive circuits, where components are not subjected into high temperature, above the typical temperature of operation of standard electronic components.


2019 ◽  
Vol 11 ◽  
Author(s):  
A. G. Karydas ◽  
T. Pantazis ◽  
C. Doumas ◽  
A. Vlachopoulos ◽  
P. Nomikos ◽  
...  

In-situ X-ray fluorescence analysis (XRF) of ancient artifacts from the excavation area was performed using a novel X-ray instrumentation, composed of a portable silicon PIN thermoelectrically cooled X-ray detector, a miniature X-ray source, and portable data acquisition devices. The main objective of the analyses in Akrotiri was to explore the potential of the technique to provide answers to a wide range of archaeometric questions regarding the bulk composition of metal alloys, especially of gold, the characterization of corrosion products in bronze artifacts, identification of inorganic elements which are fingerprints of the minerals used in wall-painting pigments, and of the painting materials and techniques used for the decoration of clay vase surfaces. Among the analysed artifacts are a unique gold ibex, a bronze dagger and blade, various pigments from the wall paintings of room 3 in Xeste 3, decoration pigments from rosettes of faience, a bichrome jug, and other clay vases. The results of the in-situ XRF survey, primarily those of the bulk composition and soldering technology of the gold ibex, are discussed and compared with literature.


2020 ◽  
Author(s):  
Stephen Shearan ◽  
Jannick Jacobsen ◽  
Ferdinando Costantino ◽  
Roberto D’Amato ◽  
Dmitri Novikov ◽  
...  

We report on the results of a thorough <i>in situ</i> synchrotron powder X-ray diffraction study of the crystallisation in aqueous medium of two recently discovered perfluorinated Ce(IV)-based metal-organic frameworks (MOFs), analogues of the already well investigated Zr(IV)-based UiO-66 and MIL-140A, namely, F4_UiO-66(Ce) and F4_MIL-140A(Ce). The two MOFs were originally obtained in pure form in similar conditions, using ammonium cerium nitrate and tetrafluoroterephthalic acid as building blocks, and small variations of the reaction parameters were found to yield mixed phases. Here, we investigate the crystallisation of these compounds <i>in situ</i> in a wide range of conditions, varying parameters such as temperature, amount of the protonation modulator nitric acid (HNO<sub>3</sub>) and amount of the coordination modulator acetic acid (AcOH). When only HNO<sub>3</sub> is present in the reaction environment, F4_MIL-140A(Ce) is obtained as a pure phase. Heating preferentially accelerates nucleation, which becomes rate determining below 57 °C, whereas the modulator influences nucleation and crystal growth to a similar extent. Upon addition of AcOH to the system, alongside HNO<sub>3</sub>, mixed-phased products, consisting of F4_MIL-140A(Ce) and F4_UiO-66(Ce), are obtained. In these conditions, F4_UiO-66(Ce) is always formed faster and no interconversion between the two phases occurs. In the case of F4_UiO-66(Ce), crystal growth is always the rate determining step. An increase in the amount of HNO<sub>3</sub> slows down both nucleation and growth rates for F4_MIL-140A(Ce), whereas nucleation is mainly affected for F4_UiO-66(Ce). In addition, a higher amount HNO<sub>3</sub> favours the formation of F4_MIL-140A(Ce). Similarly, increasing the amount of AcOH leads to slowing down of the nucleation and growth rate, but favours the formation of F4_UiO-66(Ce). The pure F4_UiO-66(Ce) phase could also be obtained when using larger amounts of AcOH in the presence of minimal HNO<sub>3</sub>. Based on these <i>in situ</i> results, a new optimised route to achieving a pure, high quality F4_MIL-140A(Ce) phase in mild conditions (60 °C, 1 h) is also identified.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000752-000759
Author(s):  
Xudong Chen ◽  
W. Kinzy Jones

Glass frit is a major component of thick film resistor (TFR) for the production of hybrid circuits. More than thirty commercial lead-free glass frits with different compositions have been evaluated for developing a lead-free thick film resistor that is compatible with typical industry thick film processing and has comparable electrical properties as the lead bearing counterpart. Two glass compositions were selected out of 33 candidates for preparation of RuO2 based TFR inks, which were screen printed on alumina substrates and fired at 850°C. The preliminary results of these resistors showed that the sheet resistance spanned from 400 ohms per square (Ω/□) to 0.4 mega-ohms per square (MΩ/□) with 5–15% RuO2 and the hot temperature coefficient of resistance (HTCR) fell in a range of ±350ppm/°C.


1989 ◽  
Vol 33 ◽  
pp. 161-169
Author(s):  
G. Sheikh ◽  
I. C. Noyan

AbstractWe report the results of a recent study where nickel substrates electroplated with chromium were loaded in-situ on an x-ray diffractometer. This technique allows determination of lattice spacings in the vicinity of the interface for both the film and the substrate as a function of the applied load. We used such lattice parameter data, SEM observations of the surface and x-ray peak breadth data to study the partitioning of deformation between the film and the substrate. The data indicates progressive loss of adhesion between the film and the substrate with increasing deformation. We observe significant effect of electroplating residual stresses on the mechanical behavior of the system. The loss of adhesion between the film and the substrate coupled with the initial residual stress profile causes an apparent 'negative Poisson's ratio' for the film during initial stages of the loading. This effect disappears with cyclic loading and unloading.


1981 ◽  
Vol 10 ◽  
Author(s):  
J. M. Vandenberg ◽  
F. J. A. Den Broeder ◽  
R. A. Hamm

An in situ annealing X-ray study was applied to Cu-Al thin film couples over a wide range of copper-to-aluminum film ratios. This new technique, which has been previously described for a study on the Au-Al thin film system, enables us to make a temperature-dependent photographic X-ray analysis. The present study indicated that only a limited number of the wide variety of bulk phases form in the Cu-Al thin film interface, while some of these phases in the interface are transient. In the transient stages of the interface reaction, the f.c.c.-ordered phase β-Cu3A1 grows over the entire range of copper-to-aluminum film ratios after the first nucleation of CuA12, indicating a two-step nucleation reaction. On the aluminum-rich side, this phase transforms to a new ordered hexagonal phase β′. It could be interpreted as a superlattice of the metastable hexagonal ω phase occurring in zirconium-based alloys. The end phases are CuA1 and CuAl2.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1734-C1734
Author(s):  
Zoltan Gal ◽  
Tadeusz Skarzynski ◽  
Fraser White ◽  
Oliver Presly ◽  
Adrian Jones ◽  
...  

Agilent Technologies develop and supply X-ray systems for single-crystal diffraction research, including the SuperNova; a compact, highly reliable and very low maintenance instrument providing X-ray data of the highest quality; and the PX Scanner for testing and characterization of protein crystals in their original crystallization drops (in-situ). The SuperNova and PX Scanner are constantly improving, with recent enhancements including a new range of detectors using an Intelligent Measurement System. The Eos S2, Atlas S2 and Titan S2 detector range employs a smart sensitivity control of the electronic gain and is capable of instantaneously switching its binning modes thus providing unprecedented flexibility in tuning every exposure to provide the highest data quality for a wide range of experiments. We have also developed a completely new micro-focus X-ray source based on Gradient Vacuum technology, with novel filament and target designs. This novel source is an integral part of the new Agilent GV1000 X-ray diffractometer, which has been designed for applications that require even higher brightness of the X-ray beam.


Author(s):  
Rebecca D. McAuliffe ◽  
Daniel P. Shoemaker

Non-stoichiometry is considered to be one of the main problems limiting iron pyrite, FeS2, as a photovoltaic absorber material. Although some historical diffraction experiments have implied a large solubility range of FeS2−δ with δ up to 0.25, the current consensus based on calculated formation energies of intrinsic defects has lent support to line-compound behavior. Here it is shown that pyrite stoichiometry is relatively inflexible in both reductive conditions and in autogenous sulfur partial pressure, which produces samples with precise stoichiometry of FeS2 even at different Fe/S ratios. By properly standardizing in situ gas-flow X-ray diffraction measurements, no significant changes in the lattice parameter of FeS2 can be resolved, which portrays iron pyrite as prone to forming sulfur-deficient compounds, but not intrinsic defects in the manner of NiS2−δ.


Sign in / Sign up

Export Citation Format

Share Document