Study of Dynamic Embrittlement in Alloy Bicrystals

1996 ◽  
Vol 458 ◽  
Author(s):  
R. G. Muthiah ◽  
J. A. Pfaendtner ◽  
C. J. McMahon ◽  
P. Lejcek ◽  
V. Paidar

ABSTRACTIn a kinetic model [1] for the phenomenon of dynamic embrittlement, the cracking rate is predicted to be proportional to the diffusivity of the embrittling species along the grain boundary. To test this model, bicrystals of Cu-Sn and Fe-Si with Σ5 symmetrical tilt boundaries are used in which tin and sulfur, respectively, are the embrittling elements. The diffusivities parallel and perpendicular to the tilt axis are expected to be different, therefore the crack growth rates in these two directions should vary in the same ratio as the diffusivities.Preliminary measurements of crack growth rate along the [100] direction in the Cu-Sn alloy bicrystal are presented. The cracking occurred by decohesion along the grain boundary with almost no observable plasticity. The steady state crack growth was found to be approximately 10∼6 m/sec.

Author(s):  
Lei Zhao ◽  
Lianyong Xu

Creep-fatigue interaction would accelerate the crack growth behaviour and change the crack growth mode, which is different from that presenting in pure creep or fatigue regimes. In addition, the constraint ahead of crack tip affects the relationship between crack growth rate and fracture mechanics and thus affects the accuracy of the life prediction for high-temperature components containing defects. In this study, to reveal the role of constraint caused by various specimen geometries in the creep-fatigue regime, five different types of cracked specimens (including C-ring in tension CST, compact tension CT, single notch tension SENT, single notch bend SENB, middle tension MT) were employed. The crack growth and damage evolution behaviours were simulated using finite element method based on a non-linear creep-fatigue interaction damage model considering creep damage, fatigue damage and interaction damage. The expression of (Ct)avg for different specimen geometries were given. Then, the variation of crack growth behaviour with various specimen geometries under creep-fatigue conditions were analysed. CT and CST showed the highest crack growth rates, which were ten times as the lowest crack growth rates in MT. This revealed that distinctions in specimen geometry influenced the in-plane constraint level ahead of crack tip. Furthermore, a load-independent constraint parameter Q* was introduced to correlate the crack growth rate. The sequence of crack growth rate at a given value of (Ct)avg was same to the reduction of Q*, which shown a linear relation in log-log curve.


CORROSION ◽  
10.5006/2896 ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 312-323
Author(s):  
Ramgopal Thodla ◽  
Feng Gui ◽  
Colum Holtam

Fatigue crack growth rate of line pipe steels in sour environments typically exhibits a steady-state value at low frequencies. However, in highly inhibited sour environments, there is no evidence of a steady-state fatigue crack growth at low frequencies. This is likely a result of static crack growth rate at Kmax. Stable static crack growth measured under constant stress intensity factor (K) conditions in inhibited sour environments was in the range of 10−7 mm/s to 10−8 mm/s. The crack growth rate in inhibited sour environments is likely associated with crack tip processes associated with metal dissolution/film formation and associated hydrogen evolution. The results obtained were modeled based on a crack tip strain rate based approach, where the rate limiting step was the metal dissolution/FeS formation and the corresponding hydrogen generation reaction.


Author(s):  
Raj Pathania ◽  
Robert G. Carter

An intergranular stress corrosion cracking (IGSCC) growth model for unirradiated nickel-base alloys (Alloys 82, 182 and 600) in boiling water reactor (BWR) environments has been developed by EPRI. This model has been used for assessment of the crack growth rates in BWR nickel base austenitic alloys with particular application to the BWR shroud support structure materials and welds, including attachments to the reactor pressure vessel fabricated from these alloys. However, the crack growth model can be used for other components with like materials in BWR environments provided that specific parameters such as stresses and stress intensity factor (KI) distributions are determined. The methodology involves development of crack growth disposition curves that can account for the variability of important IGSCC parameters to provide a conservative, yet realistic assessment of crack growth rate in BWR environments. An extensive nickel base alloy crack growth rate database was developed from data generated through the peer review process and includes both experimental data points and in-plant crack arrest verification system data. Most of the data in the database have reasonable definition of environmental conditions and other important crack growth parameters thus permitting a more realistic generic crack growth model to be developed. Although most of the data is for Alloy 182, it bounds the crack growth rate of Alloy 82 and Alloy 600. The database was used to derive crack growth disposition curves under normal water chemistry (NWC) and hydrogen water chemistry (HWC) conditions. The disposition curves have two stress intensity regimes; one for KI < 25 ksi√in where the crack growth is KI-dependent and one for KI > 25 ksi√in where the crack growth is KI-independent. The crack growth disposition curves were used together with a crack growth estimation methodology to determine the crack propagation of the BWR shroud support structure welds which are fabricated from Alloy 82/182. The steps involved in the development of the methodology include determination of residual stresses and operating stresses, development of stress intensity factor (KI) solutions for crack propagation in the through-thickness direction and estimation of crack growth rates. This methodology was applied specifically for crack growth in the through-thickness direction. Application of this crack growth model to BWR shroud support structure welds H8 and H9 indicates that there is an adequate time period between inspections before initial cracks of ≤10% through-wall thickness reaches the allowable flaw sizes, particularly for HWC conditions.


2001 ◽  
Vol 123 (3) ◽  
pp. 141-146 ◽  
Author(s):  
Mamdouh M. Salama

Optimization of weight, cost, and performance of deepwater offshore structures demands the increased utilization of high strength, light weight, and corrosion resistant materials such as titanium alloys. Titanium alloy Ti-6Al-4V has been considered for several critical components such as risers and taper joints. Because of the novelty of use of titanium alloys in the offshore industry, there is currently no standard governing design of titanium components for offshore structures. Since these structural components are subjected to a complex spectrum of environmental loading, assessment of defect tolerance using fatigue crack growth analysis is generally considered an important design parameter. In this paper, more than 60 crack growth data sets from 20 independent laboratories were collected and analyzed to develop crack growth rate equations for use in defect assessment. These data include the results of fatigue testing of both base material and welded joints in air and seawater with and without cathodic protection and at different R-ratios and test frequencies. The results suggest that for crack growth rates above 10−7 in./cycle, crack growth of Ti-6Al-4V appears to be independent of testing condition and materials processing. At the low crack growth rate (below 10−7 in./cycle), the review revealed that data are very limited. These limited data, however, suggest that the crack growth threshold is dependent on the R-ratio and slightly dependent on material processing. Comparison between crack growth rates of steel and titanium alloy (Ti-6Al-4V) showed that the two materials have very similar behavior.


1983 ◽  
Vol 22 ◽  
Author(s):  
W. A. Lees ◽  
P. S. J. Crofton

ABSTRACTThe rate of growth of fatigue cracks originating at the bore and at the outside surface of thick-walled low alloy steel cylinders has been measured for cylinders subjected to fluctuating internal pressure.Analysis of the results using linear elastic fracture mechanics relationships shows that crack growth rates found in air adequately predict the behaviour of cracks growing from the outside surface of a cylinder.Fatigue cracks growing from the bore of a cylinder subjected to fluctuating internal pressure are found to advance at a consistently higher rate than that predicted from crack growth rate tests carried out in air.These findings are discussed in relation to the proposed adoption of existent strain-life fatigue data for pressure vessel design.


1971 ◽  
Vol 93 (4) ◽  
pp. 976-980 ◽  
Author(s):  
P. Shahinian ◽  
H. H. Smith ◽  
H. E. Watson

The dependence of fatigue crack growth rates on range of stress intensity factor (ΔK) in Type 316 stainless steel was investigated over the temperature range of 75 to 1100 deg F. The data for the most part could be described by a power law relationship. An increase in temperature generally increased crack growth rate for a given ΔK and decreased fatigue life. The dependence of crack growth rate on temperature is not described adequately by an Arrhenius relation over the range investigated. On the other hand, by normalizing ΔK with respect to Young’s modulus, E, the crack growth rates for the various temperatures tend to fall within a single band.


2008 ◽  
Vol 33-37 ◽  
pp. 261-266
Author(s):  
Sheng Nan Wang ◽  
Yi Li ◽  
Jian Bo Qin ◽  
Ya Long Liu ◽  
Yue Quan Zhou

The effects of five single and three mixed corrosive environments on the fatigue crack growth and residual strength of steel 30CrMnSiNi2A were experimentally studied. The crack growth rates in corrosive environments, obtained by using Paris equation, were compared with crack growth rate in lab air. The results showed that the interactions of aggressive environments with fatigue loads caused the accelerations of fatigue crack growth rates in steel 30CrMnSiNi2A. But the effects of various environments on the fatigue crack growth rate are different. Among the environments the most detrimental one was oil-box zone, followed by cookroom&washroom, tank seeper, 3.5%NaCl, moist air, high altitude and dried air. Also, the test data showed the less effect of various corrosive environments on critical crack length, that is, no direct infection of corrosive environments on residual strength capability dominated by fracture toughness.


Author(s):  
Eun Ju Song ◽  
Joseph A. Ronevich

One of the most efficient methods for supplying gaseous hydrogen long distances is by using steel pipelines. However, steel pipelines exhibit accelerated fatigue crack growth rates in gaseous hydrogen relative to air. Despite conventional expectations that higher strength steels would be more susceptible to hydrogen embrittlement, recent testing on a variety of pipeline steel grades has shown a notable independence between strength and hydrogen assisted fatigue crack growth rate. It is thought that microstructure may play a more defining role than strength in determining the hydrogen susceptibility. Among the many factors that could affect hydrogen accelerated fatigue crack growth rates, this study was conducted with an emphasis on orientation dependence. The orientation dependence of toughness in hot rolled steels is a well-researched area; however, few studies have been conducted to reveal the relationship between fatigue crack growth rate in hydrogen and orientation. In this work, fatigue crack growth rates were measured in hydrogen for high strength steel pipeline with different orientations. A significant reduction in fatigue crack growth rates were measured when cracks propagated perpendicular to the rolling direction. A detailed microstructural investigation was performed, in an effort to understand the orientation dependence of fatigue crack growth rate performance of pipeline steels in hydrogen environments.


1994 ◽  
Vol 116 (1) ◽  
pp. 45-53 ◽  
Author(s):  
K. V. Jata ◽  
D. Maxwell ◽  
T. Nicholas

Frequency effects on fatigue crack growth rates are examined in aluminum alloy 8009 in sheet and extruded product forms. The investigations show that frequency effects on the fatigue crack growth rates are pronounced in the sheet but minimal in the extrusion. The influence of creep cracking on fatigue crack growth rate is studied through tests with a 60 s hold-time at maximum load at several stress intensity ranges. A 60 s hold-time at maximum load at 315°C tends to retard fatigue crack growth in both the sheet and the extrusion. The mechanism by which this retardation occurs is attributed to stress relaxation at the crack tip. At 204°C a 60 s hold at Pmax accelerates crack growth rate in the sheet but not in the extrusion. Vacuum and laboratory air tests show that fatigue crack growth rates in vacuum are lower than in air by about a factor of four. A 60 s hold-time at minimum load has only a minor effect on the fatigue crack growth rates at 315°C and no effect at 204°C, confirming the absence of any strong environmental contribution to crack growth rate. Fracture modes in fatigue, creep crack growth and hold-time at Pmax are significantly different. The fractographic results are discussed in relation to the mechanical property data.


2007 ◽  
Vol 345-346 ◽  
pp. 999-1002
Author(s):  
W.Y. Maeng

Organic acids (acetic and formic acid) are produced by the decomposition of ETA (Ethanol Amine, C2H7NO) used as pH controller of secondary water in nuclear power plants. Corrosion Fatigue (CF) tests (R=0.2, 0.1Hz) were conducted to evaluate the effect of acetic acid on the CF crack growth rate in high temperature water at 150°C. Acetic acid significantly influenced the environmental cracking behavior of turbine disc steels in high temperature water. The CF crack growth rates of turbine disc steels increase as the organic acid concentration increase to a critical saturation pH value (~pH 4). Beyond the saturation value of pH, the CF crack growth rates decrease significantly. The higher CF crack growth rate of the higher pH solution in water of intermediate content range (pH 4~pH 5) of acetic acid is due to the higher content of H+ enhancing the reduction reactions. Crack tip blunting prevents the CF cracks from growing with increasing rate in the solution of organic acid concentrations beyond the critical value.


Sign in / Sign up

Export Citation Format

Share Document