Quantitative Analysis of Displacement at 90° Domain Boundaries In BaTiO3 and PbTiO3

1996 ◽  
Vol 466 ◽  
Author(s):  
Frances M. Ross ◽  
Roar Kilaas ◽  
Etienne Snoeck ◽  
Martin Hÿtch ◽  
Alain Thorel ◽  
...  

ABSTRACTIn this paper we discuss the measurement of long range displacement fields associated with 90° domain boundaries in the ferroelectric ceramics BaTiO3 and PbTiO3. We have calculated displacement fields from high resolution lattice images by two techniques: firstly, measuring the positions of peaks in the images, and secondly, using a geometric phase analysis technique to magnify small lattice distortions. We describe the results and consider the complementary use of Fresnel contrast analysis to characterize local strain and electric fields near the boundaries.

Author(s):  
W. M. Kriven

Significant progress towards a fundamental understanding of transformation toughening in composite zirconia ceramics was made possible by the application of a TEM contrast analysis technique for imaging elastic strains. Spherical zirconia particles dispersed in a large-grained alumina matrix were examined by 1 MeV HVEM to simulate bulk conditions. A thermal contraction mismatch arose on cooling from the processing temperature of 1500°C to RT. Tetragonal ZrO2 contracted amisotropically with α(ct) = 16 X 10-6/°C and α(at) = 11 X 10-6/°C and faster than Al2O3 which contracted relatively isotropically at α = 8 X 10-6/°C. A volume increase of +4.9% accompanied the transformation to monoclinic symmetry at room temperature. The elastic strain field surrounding a particle before transformation was 3-dimensionally correlated with the internal crystallographic orientation of the particle and with the strain field after transformation. The aim of this paper is to theoretically and experimentally describe this technique using the ZrO2 as an example and thereby to illustrate the experimental requirements Tor such an analysis in other systems.


2018 ◽  
Vol 115 (21) ◽  
pp. 5338-5342 ◽  
Author(s):  
Lu Zheng ◽  
Hui Dong ◽  
Xiaoyu Wu ◽  
Yen-Lin Huang ◽  
Wenbo Wang ◽  
...  

The electrical generation and detection of elastic waves are the foundation for acoustoelectronic and acoustooptic systems. For surface acoustic wave devices, microelectromechanical/nanoelectromechanical systems, and phononic crystals, tailoring the spatial variation of material properties such as piezoelectric and elastic tensors may bring significant improvements to the system performance. Due to the much slower speed of sound than speed of light in solids, it is desirable to study various electroacoustic behaviors at the mesoscopic length scale. In this work, we demonstrate the interferometric imaging of electromechanical power transduction in ferroelectric lithium niobate domain structures by microwave impedance microscopy. In sharp contrast to the traditional standing-wave patterns caused by the superposition of counterpropagating waves, the constructive and destructive fringes in microwave dissipation images exhibit an intriguing one-wavelength periodicity. We show that such unusual interference patterns, which are fundamentally different from the acoustic displacement fields, stem from the nonlocal interaction between electric fields and elastic waves. The results are corroborated by numerical simulations taking into account the sign reversal of piezoelectric tensor in oppositely polarized domains. Our work paves ways to probe nanoscale electroacoustic phenomena in complex structures by near-field electromagnetic imaging.


1991 ◽  
Vol 238 ◽  
Author(s):  
C. C. Chou ◽  
J. Li ◽  
C. M. Wayman

ABSTRACTDomain boundary structures of flux-grown poly-domain lead titanate single crystals have been studied using transmission electron microscopy. 90° and 180° domain boundaries were seen in the crystals and were systematically analyzed under various diffraction conditions. Although 90° domain boundaries are supposely δ-type boundaries in BaTiO3, our results show that displacement plays an important role at boundaries and the extreme fringe contrast (EFC) behavior of 90° boundaries is of the mixed type. In the present work, an analysis based upon the two beam dynamical theory was conducted and a rule similar to stacking-fault contrast analysis was established to predict the geometric configuration of a 180° domain boundary using EFC behavior. Examples are given and verified by tilting experiments and electron diffraction. The results are consistent and offer a convenient way to distinguish between 90° and 180° boundaries.


1997 ◽  
Vol 12 (2) ◽  
pp. 457-466 ◽  
Author(s):  
Chen-Chia Chou ◽  
C. Marvin Wayman

180° domain boundaries in flux-grown lead titanate single crystals show intriguing domain boundary extreme fringe contrast using transmission electron microscopy. Symmetrically distributed domain boundaries with alternate contrast have been observed, indicating that opposite displacement vectors exist one by one at boundaries. If appropriate reflection vectors were employed, an inclined domain boundary shows reversed fringe contrast. An analysis based upon the two-beam dynamical theory and a rule similar to stacking-fault contrast analysis was employed to predict the geometric configuration of a 180° domain boundary using the extreme fringe contrast (EFC) behavior. Appropriately choosing reflection vectors and utilizing the EFC reversal, a displacement vector as well as the polarization vector arrangement across a 180° domain boundary can be unambiguously identified. Employing the information derived from diffraction patterns and a tilting experiment across a nearby 90° boundary, the whole polarization configuration can be uniquely determined.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Muhammad Tanveer ◽  
Anand V. Singh

A numerical approach is presented for linear and geometrically nonlinear forced vibrations of laminated composite plates with piezoelectric materials. The displacement fields are defined generally by high degree polynomials and the convergence of the results is achieved by increasing the degrees of polynomials. The nonlinearity is retained with the in-plane strain components only and the transverse shear strains are kept linear. The electric potential is approximated layerwise along the thickness direction of the piezoelectric layers. In-plane electric fields at the top and bottom surfaces of each piezoelectric sublayer are defined by the same shape functions as those used for displacement fields. The equation of motion is obtained by the Hamilton’s principle and solved by the Newmark’s method along with the Newton–Raphson iterative technique. Numerical procedure presented herein is validated by successfully comparing the present results with the data published in the literature. Additional numerical examples are presented for forced vibration of piezoelectric sandwich simply supported plates with either a homogeneous material or laminated composite as core. Both linear and nonlinear responses are examined for mechanical load only, electrical load only, and the combined mechanical and electrical loads. Displacement time histories with uniformly distributed load on the plate surface, electric volts applied on the top and bottom surfaces of the piezoelectric plates, and mechanical and electrical loads applied together are presented in this paper. The nonlinearity due to large deformations is seen to produce stiffening effects, which reduces the amplitude of vibrations and increases the frequency. On the contrary, antisymmetric electric loading on the nonlinear response of piezoelectric sandwich plates shows increased amplitude of vibrations.


1999 ◽  
Vol 14 (7) ◽  
pp. 2940-2944 ◽  
Author(s):  
Fei Fang ◽  
Wei Yang ◽  
Ting Zhu

Lanthanum-modified lead zirconate titanate ferroelectric ceramics (Pb0.96La0.04)(Zr0.40Ti0.60)0.99O3 were synthesized by the conventional powder processing technique. X-ray diffraction experiments revealed that the samples belong to the tetragonal phase with a = b = 0.4055 nm, c = 0.4109 nm, and c/a = 1.013. After being poled, the samples were indented with a 5-kg Vickers indenter, and lateral electric fields of 0.4 Ec, 0.5 Ec, and 0.6 Ec (Ec = 1100 V/mm) were applied, respectively. Field-emission scanning electron microscopy showed that 90° domain switching appeared near the tip of the indentation crack under a lateral electric field of 0.6 Ec. A mechanism of 90° domain switching near the crack tip under an electric field is discussed.


2000 ◽  
Vol 618 ◽  
Author(s):  
V. Narayanan ◽  
S. Mahajan ◽  
K. J. Bachmann ◽  
V. Woods ◽  
N. Dietz

ABSTRACTGaP islands grown on selected surfaces of Si and their coalescence behavior have been investigated by transmission electron microscopy. These layers were grown by chemical beam epitaxy. A number of significant observations emerge from this study. First, planar defect formation has been shown to be related to stacking errors on the smaller P-terminated {111} facets of GaP islands. Amongst the four orientations, (111) epilayers have a higher density of stacking faults and first order twins because of more P-terminated {111} facets per island. Second, multiple twinning on exposed {111} facets can produce tilt boundaries and irregular growths when islands coalesce. Third, inversion domain boundaries lying on {110} planes have been shown to form during GaP island coalescence across monatomic steps on (001) Si. Image simulations have been performed to show that these boundaries can be seen in high resolution lattice images and the observed contrast is attributed to the presence of wrong Ga-Ga and P-P bonds at the inversion boundary.


Sign in / Sign up

Export Citation Format

Share Document