Internal Electric Field Profile in Thin Film Hydrogenated Amorphous Silicon Diodes Studied by the Transient-Null-Current Method

1997 ◽  
Vol 467 ◽  
Author(s):  
Daxing Han ◽  
Chenan Yeh ◽  
Keda Wang ◽  
Qiwang

ABSTRACTWe demonstrate that the internal field of a thin a-Si:H pin solar cells can be measured using the transient-null-current method. This method was previously developed to measure the internal field profile in a-Si alloy Schottky barrier. The internal electric field profile was determined by measuring the forward-bias voltages that tune the transient photocurrents generated by a pulsed laser at a various wavelengths to zero. We adopt the same technique to a-Si:H p-i-n solar cells. In the case of p-i-n structure, we need to consider both space charge contributed by photogenerated carriers and carrier recombination which disturb the internal field. We use two critical conditions to minimize these effects. (1) To limit the contribution of photocarriers to space-charge distribution, the total charge collected is less than 10−10 C per pulse, and a repetition rate 1 Hz is used to ensure that the diode remains close to its equilibrium state. (2) The measuring time window is about 1 – 6 μs following the displacement current. Typically the RC constant of diode is < 1 μs and the rise time of the forward-bias recombination current is 6.0 × μs. We apply the signal average to process the forward-bias voltage. The error is within ± 0.05 V. With this technique we can study the effect of variety of structure design or processing on the device performance.

1998 ◽  
Vol 507 ◽  
Author(s):  
Xinhua Geng ◽  
Lei Wu ◽  
Kent Price ◽  
Xunming Deng ◽  
Qi Wang ◽  
...  

ABSTRACTBy using the transient-null-current method, we have measured the internal electric field profiles Ei(x) near the p/i interface for two groups of solar cells: (a) a-Si:H p-i-n solar cells with varied i-layer thicknesses, and (b) a-SiGe:H cells with varied Ge content. When using an exponential function of Ei(x) to fit the experimental results, we obtained the field strength at the p/i interface E0, the screening length Lo, and the density of defect states Nd in the i-layer. The thinner the i-layer, the stronger the field strength obtained. For i-layer thickness increasing from 0.1 to 0.5 μm, the field strength E0 decreases from 1.15×105 to 2.0×104 V/cm; Lo decreases from 0.89 to 0.14 μm; and Nd is 3-4×1016 (cm3eV)−1. For the a-SiGe:H cells, as the Ge content increases from 40 to 55 %, E0 increases from 9.3×104 to 1.2×105 V/cm. The correlation of the internal electric field parameters with the cell‘s performance is discussed.


1991 ◽  
Vol 23 (2-4) ◽  
pp. 273-281
Author(s):  
R. Könenkamp ◽  
S. Muramatsu ◽  
H. Itoh ◽  
S. Matsubara ◽  
T. Shimada

1997 ◽  
Vol 467 ◽  
Author(s):  
Qi Wang ◽  
Richard S. Crandall ◽  
Daxing Han

ABSTRACTWe study the effects of hydrogen dilution on the open circuit voltage of a-Si:H pin solar cells fabricated by rf glow discharge growth. We keep the p and n layers the same and only vary the i layer properties. A normal a-Si:H i layer, an H-diluted i layer, and a thin H-diluted layer inserted between p and normal i layer are selected for this study. We measure the JV characteristics and the internal electric field distribution using a transient-null-current technique both in annealed and light soaked states. We find that hydrogen dilution does stabilize the Voc either in a bulk H-diluted i layer or in a thin layer between p and normal i layer after 100 hours AMI sun light soaking. From dark IV measurement, both H-diluted cells show little change in current at voltage near Voc before and after light soaking; while the normal a-Si:H cell does show a noticeable change. Also the internal field measurements find a stronger electric field starting from p and i interface for both H-diluted cells compared to the normal a-Si:H cell. Furthermore, there are no measurable changes in the field profiles after 100 hour AMI light-soaking for both H-diluted and normal a-Si cells. All these suggest that hydrogen dilution increases the field strength near p and i interface, which is the key that leads to a more stable Voc of H-diluted cells.


Author(s):  
R. Könenkamp ◽  
S. Muramatsu ◽  
H. Itoh ◽  
S. Matsubara ◽  
T. Shimada

1998 ◽  
Vol 507 ◽  
Author(s):  
N. Wyrsch ◽  
N. Beck ◽  
J. Meier ◽  
P. Torres ◽  
A. Shah

ABSTRACTSolar cells based on microcrystalline silicon (ptc-Si:H) have demonstrated remarkable efficiencies and have been successfully incorporated in tandem structures; however, little work has so far been devoted to the understanding of these devices. The objective of this paper is to obtain more insight into their physical functioning by extensive characterisation of μc-Si:H devices. Charge-collection experiments shows that high electric field E(x) is present throughout the entire i-layer of thick p-i-n device. Furthermore, from capacitance studies, one concludes that the electric field profile is partly concentrated at grain boundaries. In contrast with these two observations, spectral response under forward bias voltage show that thick [tc-Si:H p-i-n devices are (unlike a-Si:H p-i-n devices) not fully field-controlled.


1972 ◽  
Vol 8 (4) ◽  
pp. 93 ◽  
Author(s):  
G.A. Swartz ◽  
A. Gonzalez ◽  
A. Dreeben

2021 ◽  
Vol 223 ◽  
pp. 110948
Author(s):  
Alban Lafuente-Sampietro ◽  
Katsuhisa Yoshida ◽  
Shenghao Wang ◽  
Shogo Ishizuka ◽  
Hajime Shibata ◽  
...  

2013 ◽  
Vol 31 (2) ◽  
pp. 251-261 ◽  
Author(s):  
J. De Keyser ◽  
M. Echim

Abstract. Strong localized high-altitude auroral electric fields, such as those observed by Cluster, are often associated with magnetospheric interfaces. The type of high-altitude electric field profile (monopolar, bipolar, or more complicated) depends on the properties of the plasmas on either side of the interface, as well as on the total electric potential difference across the structure. The present paper explores the role of this cross-field electric potential difference in the situation where the interface is a tangential discontinuity. A self-consistent Vlasov description is used to determine the equilibrium configuration for different values of the transverse potential difference. A major observation is that there exist limits to the potential difference, beyond which no equilibrium configuration of the interface can be sustained. It is further demonstrated how the plasma densities and temperatures affect the type of electric field profile in the transition, with monopolar electric fields appearing primarily when the temperature contrast is large. These findings strongly support the observed association of monopolar fields with the plasma sheet boundary. The role of shear flow tangent to the interface is also examined.


Sign in / Sign up

Export Citation Format

Share Document