Performance of thin film Transistors on Unhydrogenated In-Situ Doped Polysilicon films Obtained by Solid Phase Crystallization

1997 ◽  
Vol 471 ◽  
Author(s):  
K. Mourgues ◽  
F. Raoult ◽  
L. Pichon ◽  
T. Mohammed-Brahim ◽  
D. Briand ◽  
...  

ABSTRACTLow Temperature Unhydrogenated in-situ doped polysilicon Thin Film Transistors (LTUTFT) are made through two types of four-mask aluminium gate process. Silicon layers are elaborated by a Low Pressure Chemical Vapor Deposition (LPCVD) method and crystallized by a thermal annealing. Source and drain regions are in-situ doped. An Atmospheric Pressure Chemical Vapor Deposition (APCVD) silicon dioxide ensures the gate insulation. Two structures A and B are fabricated, the difference is that for sample B the undoped/doped polysilicon layer interface is suppressed.The structure of the polysilicon films is studied using Transmission Electron Microscopy (TEM) and Current-Voltage characteristics of both types of TFTs indicate electrical quality of the polysilicon films.The best electrical properties are obtained with the B type TFTs: a low threshold voltage (VT=1.2V), a low subthreshold slope (0.7 V/dec), a high On/Off state current ratio (107) for a drain voltage VDS= 1V, and a very high field effect mobility (≥100 cm2 /Vs). It is worth to notice that these good results are obtained without hydrogenation.

1998 ◽  
Vol 508 ◽  
Author(s):  
A. Izumi ◽  
T. Ichise ◽  
H. Matsumura

AbstractSilicon nitride films prepared by low temperatures are widely applicable as gate insulator films of thin film transistors of liquid crystal displays. In this work, silicon nitride films are formed around 300 °C by deposition and direct nitridation methods in a catalytic chemical vapor deposition system. The properties of the silicon nitride films are investigated. It is found that, 1) the breakdown electric field is over 9MV/cm, 2) the surface state density is about 1011cm−2eV−1 are observed in the deposition films. These result shows the usefulness of the catalytic chemical vapor deposition silicon nitride films as gate insulator material for thin film transistors.


Author(s):  
Meric Firat ◽  
Hariharsudan Sivaramakrishnan Radhakrishnan ◽  
Maria Recaman Payo ◽  
Filip Duerinckx ◽  
Rajiv Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document