Growth Chemistry of Ultrathin Silicon Nitride and Oxynitride
Passivation Layers on Si(100)
ABSTRACTWe have studied the thermal growth chemistry and bonding structure of three promising ultrathin (5–20Å), nitrogen rich passivation layers on Si(100), namely-Si3N4, NO/Si(100) grown oxynitride and NO annealed SiO2. These films are intended to serve as substrates with excellent diffusion barrier/interface properties during deposition of high- K dielectrics such as Ta2O5, with tSiO2 equivalent <30Å for ULSI applications. In this paper we show that it is possible to form films with a tailored composition and nitrogen profile using techniques that can easily be integrated with existing silicon processing technology. Alternating growth and surface analysis by X-Ray Photoelectron Spectroscopy (XPS) is used to non destructively characterize the growth.