Dissociation of Deuterium-Defect Complexes in Ion-Implanted Epitaxial 4H-SiC

1998 ◽  
Vol 513 ◽  
Author(s):  
M. Janson ◽  
M. K. Linnarsson ◽  
A. Hallén ◽  
B. G. Svensson

ABSTRACTEpitaxial layers of low doped 4H-SiC are implanted with 20 keV 2H+ ions to a dose of 1×1015 cm−2. The samples are subsequently annealed at temperatures ranging from 1040 to 1135 °C. Secondary ion mass spectrometry is used to obtain the concentration versus depth profiles of the atomic deuterium in the samples. It is found that the concentration of implanted deuterium decreases rapidly in the samples as a function of anneal time.The experimental data are explained by a model where the deuterium migrates rapidly and becomes trapped and de-trapped at implantation-induced defects which exhibit a slightly shallower depth distribution than the implanted deuterium ions. Computer simulations using this model, in which the damage profile is taken from Monte Carlo simulations and the surface is treated as a perfect sink for the diffusing deuterium atoms, are performed with good results compared to the experimental data. The complexes are tentatively identified as carbon-deuterium at a Si-vacancy and a dissociation energy (ED) of approximately 4.9 eV is extracted for the deuterium-vacancy complexes.

1995 ◽  
Vol 396 ◽  
Author(s):  
J. P. Lavine ◽  
L. Zheng ◽  
P. M. Whalen ◽  
D. F. Downey

AbstractSecondary ion mass spectrometry (SIMS) is used to produce depth profiles of ion-implanted phosphorus in silicon. The implant energies are 250, 500, and 750 keV, and there is a 0.06-μm thick oxide on the silicon. The experimental profiles are compared with predictions from a variety of simulation programs, most of which give larger projected ranges than the data. The silicon crystal structure needs to be included in the calculations to produce projected ranges and depth profiles that agree with the present experimental data and with data from the literature.


1986 ◽  
Vol 74 ◽  
Author(s):  
G. Bahir ◽  
J. L. Merz ◽  
J. R. Abelson ◽  
T. W. Sigmon

AbstractThe Fe depth distribution has been measured in semi-insulating (SI) InP implanted with Si as a function of implant temperature and post-implant annealing technique (either furnace annealing or rapid thermal annealing). Depth profiles obtained by secondary ion mass spectrometry and Rutherford backscattering measurements of the damage demonstrate that Fe redistributes into regions of residual damage during thermal processing. These results are interpreted in terms of implantation-related damage effects and the stoichiometry imbalance induced by the Si implantation.


1996 ◽  
Vol 423 ◽  
Author(s):  
M. K. Linnarsson ◽  
J. P. Doyle ◽  
B. G. Svensson

Abstract6H polytype silicon carbide (SiC) samples of n-type have been implanted with 50 keV H+ ions and subsequently annealed at temperatures between 200 °C and 1150 °C. Using depth profiling by secondary ion mass spectrometry motion of hydrogen is observed in the implanted region for temperatures above 700 °C. A diffusion coefficient of ∼10−14 cm2/s is extracted at 800°C with an approximate activation energy of ∼3.5 eV. Hydrogen displays strong interaction with the implantation-induced defects and stable hydrogen-defect complexes are formed. These complexes anneal out at temperatures in excess of 900°C and are tentatively identified as Carbon-Hydrogen centers at a Si vacancy.


2010 ◽  
Vol 82 (19) ◽  
pp. 8291-8299 ◽  
Author(s):  
Alan M. Piwowar ◽  
John S. Fletcher ◽  
Jeanette Kordys ◽  
Nicholas P. Lockyer ◽  
Nicholas Winograd ◽  
...  

1983 ◽  
Vol 25 ◽  
Author(s):  
Lawrence E. Lapides ◽  
George L. Whiteman ◽  
Robert G. Wilson

ABSTRACTQuantitative depth profiles of impurities in LPE layers of HgCdTe have been determined using relative sensitivity factors calculated from ion implantation profiles. Standards were provided for Li, Be, B, C, F, Na, Mg, Al, Si, P, S, Cl, Cu, Ga, As, Br, and In. Relative sensitivity factors as a function of ionization potential for O2+ primary ion SIMS and electron affinity for Cs+ primary ion SIMS have been calculated in order to extend quantitation to elements not yet implanted. Examples of depth profiles for implant standards and unimplanted layers are given.


Sign in / Sign up

Export Citation Format

Share Document