Oxide Growth Using the Water-Wall Arc Lamp

1985 ◽  
Vol 52 ◽  
Author(s):  
Jeffrey C. Gelpey ◽  
Paul O. Stump ◽  
Ronald A. Capodilupo

ABSTRACTThe uses of Rapid Thermal Annealing or Rapid Thermal Processing (RTP) have been expanding beyond the original post implant annealing. RTP has been used to reflow low temperature oxides (PSG or BPSG), anneal silicides and to sinter contacts. One application of RTP which is beginning to receive attention is the growth of oxides or nitrides of silicon.This paper will examine the use of a commercial rapid thermal processing system based on a very high power water-wall DC arc lamp to grow oxides on silicon wafers. The work includes a study of the growth rates of oxides at different temperatures. Direct feedback control of wafer temperature and high ramp-up and cool-down rates are used to minimize the effects of temperature errors or “tails” in the temperature/time profiles. Ellipsometry is used as the primary measurement tool to characterize the oxide films.In addition to using a pure, dry oxygen atmosphere, several oxygen-argon mixtures are used. The effects of atmosphere on the growth rate of the oxide film are reported.In order to become a practical application of RTP, oxide growth must be accomplished uniformly and reproducibly. These characteristics are machine-dependent. The uniformity of films grown in this system are discussed. The growth of oxide films and the uniformity measurements are used as an indirect technique to characterize the uniformity of the system. The reproducibility of film thickness is also examined.

1987 ◽  
Vol 92 ◽  
Author(s):  
A. Usami ◽  
Y. Tokuda ◽  
H. Shiraki ◽  
H. Ueda ◽  
T. Wada ◽  
...  

ABSTRACTRapid thermal processing using halogen lamps was applied to the diffusion of Zn into GaAs0.6 P0.4:Te from Zn-doped oxide films. The Zn diffusion coefficient of the rapid thermal diffused (RTD) samples at 800°C for 6 s was about two orders of magnitude higher than that of the conventional furnace diffused samples at 800°C for 60 min. The enhanced diffusion of Zn by RTD may be ascribed to the stress field due to the difference in the thermal expansion coefficient between the doped oxide films and GaAs0.6P0.4 materials, and due to the temperature gradient in GaAs0.6P0 4 materials. The Zn diffusion coefficient at Zn concentration of 1.0 × l018 cm−3 was 3.6 × 10−11, 3.1 × 10−11 and 5.0 × 10−12 cm2 /s for the RTD samples at 950°C for 6 s from Zn-, (Zn,Ga)- and (Zn,P)-doped oxide films, respectively. This suggests that Zn diffusibility was controlled by the P in the doped oxide films.


1988 ◽  
Vol 129 ◽  
Author(s):  
J.L. Regolini ◽  
D. Bensahel ◽  
J. Mercier ◽  
C. D'Anterroches ◽  
A. Perio

ABSTRACTIn a rapid thermal processing system working at a total pressure of a few Torr, we have obtained selective epitaxial growth of silicon at temperatures as low as 650°C. When using SiH2Cl2 (DCS) as the reactive gas, no addition of HCl is needed. Nevertheless, using SiH4 below 950°C a small amount of HCl should be added.Some kinetic aspects of the two systems, DCS/HCI/H2 and SiH4/HCl/H2, are presented and discussed. For the DCS system, we show that the rate-limiting reactions are slightly different from those commonly accepted in the literature, where the results are from systems working at atmospheric pressure or in the 20-100 Torr range.Our model is based on the main decomposition of DCS, SiH2Cl→SiHCl + HCl, instead of the widely accepted reaction SiH2Cl2→SiCl2 + H2. This is the main reason why no extra HCl is required in the DCS/H2 system to obtain full selectivity from above 1000°C down to 650°C.


2003 ◽  
Vol 125 (3) ◽  
pp. 504-511 ◽  
Author(s):  
Ching-Kong Chao ◽  
Shih-Yu Hung ◽  
Cheng-Ching Yu

The concept of rapid thermal processing has many potential applications in microelectronics manufacturing, but the details of chamber design remains an active area of research. In this work the influence of lamps radius on the thermal stresses in a wafer during the cooling process is studied in detail. Since the equations governing the present thermal-elastic system are coupled in nature, the solution for the temperature and stresses must proceed simultaneously by using a fully implicit finite difference method. After the thermal stresses are obtained, the optimum lamps radii for various heights of the chamber under the constant power ramp-down control scheme are determined based on the maximum shear stress failure criterion. The shortest cooling time that can significantly reduce the thermal budget and dopant redistribution is also predicted by applying the maximum stress control scheme. The result obtained is useful in the design of a reliable rapid thermal processor based on a more practical consideration, thermal stress.


1992 ◽  
Author(s):  
Xiao-Li Xu ◽  
Jim J. Wortman ◽  
Mehmet C. Ozturk ◽  
Furman Y. Sorrell

1989 ◽  
Vol 146 ◽  
Author(s):  
Fred Ruddell ◽  
Colin Parkes ◽  
B Mervyn Armstrong ◽  
Harold S Gamble

ABSTRACTThis paper describes a LPCVD reactor which was developed for multiple sequential in-situ processing. The system is capable of rapid thermal processing in the presence of plasma stimulation and has been used for native oxide removal, plasma oxidation and silicon deposition. Polysilicon layers produced by the system are incorporated into N-P-N polysilicon emitter bipolar transistors. These devices fabricated using a sequential in-situ plasma clean-polysilicon deposition schedule exhibited uniform gains limited to that of long single crystal emitters. Devices with either plasma grown or native oxide layers below the polysilicon exhibited much higher gains. The suitability of the system for sequential and limited reaction processing has been established.


2011 ◽  
Vol 178-179 ◽  
pp. 249-252 ◽  
Author(s):  
Xiang Yang Ma ◽  
Li Ming Fu ◽  
De Ren Yang

Oxygen precipitation (OP) behaviors were investigated for Czochralski (Cz) silicon wafers, which were coated with silicon nitride (SiNx) films or not, subjected to two-step anneal of 800C/4 h+1000°C/16 h following rapid thermal processing (RTP) at different temperatures ranging from 1150 to 1250C for 50 s. It was found that OP in the Cz silicon wafers coated with SiNx films was stronger in each case. This was because that nitrogen atoms diffused into bulk of Cz silicon wafer from the surface coated SiNx film during the high temperature RTP. Furthermore, it was proved that the RTP lamp irradiation facilitated the in-diffusion of nitrogen atoms, which was most likely due to that the ultraviolet light enhanced the breakage of silicon-nitrogen bonds.


2002 ◽  
Vol 5 (5) ◽  
pp. F11 ◽  
Author(s):  
Yoshihide Senzaki ◽  
Marci Schaefer ◽  
Joseph Sisson ◽  
Carl Barelli ◽  
Jeff Bailey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document