Latchup Free Lateral Cmos on Laser Recrystallized Silicon

1985 ◽  
Vol 53 ◽  
Author(s):  
S. Sritharan ◽  
R. Solanki ◽  
G. J. Collins ◽  
J. Fukumoto ◽  
N. Szluk ◽  
...  

ABSTRACTLatchup free CMOS devices have been fabricated by forming PMOS transistors in a 0.5μm thick laser recrystallized silicon layer. This recrystallized layer is isolated fram the bulk wafer by a lμm thick oxide layer. The NMOS transistors were fabricated both in the bulk wafer in the region which was used as the recrystallization seeds, as well as in the recrystallized silicon layer itself. Ring oscillators fabricated with 3μm channel length using a bi-layer lateral CMOS structure show a naninal delay of 1.7ns/stage. The MOS devices fabricated in the recrystallized silicon show low subthreshold leakage current, and surface electron and hole mobilities of 580cm2/V.s and 210cm2/V.s respectively.

Author(s):  
Franco Stellari ◽  
Peilin Song ◽  
James C. Tsang ◽  
Moyra K. McManus ◽  
Mark B. Ketchen

Abstract Hot-carrier luminescence emission is used to diagnose the cause of excess quiescence current, IDDQ, in a low power circuit implemented in CMOS 7SF technology. We found by optical inspection of the chip that the high IDDQ is related to the low threshold, Vt, device process and in particular to transistors with minimum channel length (0.18 μm). In this paper we will also show that it is possible to gain knowledge regarding the operating conditions of the IC from the analysis of optical emission due to leakage current, aside from simply locating defects and failures. In particular, we will show how it is possible to calculate the voltage drop across the circuit power grid from time-integrated acquisitions of leakage luminescence.


2007 ◽  
Vol 124-126 ◽  
pp. 259-262
Author(s):  
Jae Hong Jeon ◽  
Kang Woong Lee

We investigated the effect of amorphous silicon pattern design regarding to light induced leakage current in amorphous silicon thin film transistor. In addition to conventional design, where amorphous silicon layer is protruding outside the gate electrode, we designed and fabricated amorphous silicon thin film transistors in another two types of bottom gated structure. The one is that the amorphous silicon layer is located completely inside the gate electrode and the other is that the amorphous silicon layer is protruding outside the gate electrode but covered completely by the source and drain electrode. Measurement of the light induced leakage current caused by backlight revealed that the design where the amorphous silicon is located inside the gate electrode was the most effective however the last design was also effective in reducing the leakage current about one order lower than that of the conventional design.


Author(s):  
Ameer F. Roslan ◽  
F. Salehuddin ◽  
A.S. M.Zain ◽  
K.E. Kaharudin ◽  
H. Hazura ◽  
...  

<p>This paper presents an investigation on properties of Double Gate FinFET (DGFinFET) and impact of physical properties of FinFET towards short channel effects (SCEs) for 30 nm device, where depletion-layer widths of the source-drain corresponds to the channel length aside from constant fin height (HFIN) and the fin thickness (TFIN). Virtual fabrication process of 3-dimensional (3D) design is applied throughout the study and its electrical characterization is employed and substantial is shown towards the FinFET design whereby in terms of the ratio of drive current against the leakage current (ION/IOFF ratio) at 563138.35 compared to prediction made by the International Technology Roadmap Semiconductor (ITRS) 2013. Conclusively, the incremental in ratio has fulfilled the desired in incremental on the drive current as well as reductions of the leakage current. Threshold voltage (VTH) meanwhile has also achieved the nominal requirement predicted by the International Technology Roadmap Semiconductor (ITRS) 2013 for which is at 0.676±12.7% V. The ION , IOFF and VTH obtained from the device has proved to meet the minimum requirement by ITRS 2013 for low performance Multi-Gate technology.</p>


Author(s):  
Turki Alnuayri ◽  
Saqib Khursheed ◽  
Antonio Leonel Hernandez Martinez ◽  
Daniele Rossi

2006 ◽  
Vol 527-529 ◽  
pp. 1027-1030 ◽  
Author(s):  
Owen J. Guy ◽  
L. Chen ◽  
G. Pope ◽  
K.S. Teng ◽  
T. Maffeis ◽  
...  

The investigation of the silicon carbide surface after a sacrificial silicon oxidation technique is reported. Oxidation of SiC is a necessary step in the fabrication of MOS devices and device termination features such as field plates. Device processing requires the etching of windows through the oxide layer to form features such as metal / SiC contacts. However, this work indicates that a thin interfacial Si-O-C layer is still present after etching the oxide with hydrofluric acid (HF). Ellipsometry and X-ray photoelectron spectroscopy (XPS) have been used to evaluate this interfacial layer formed after oxide growth and after subsequent removal of oxide layers. An XPS analysis of the surface after removal of the oxide revealed that silicon, oxygen and carbon were all present in the remaining layer, which could not be removed by annealing at temperatures up to 1000°C. The Si-O-C layer could be eliminated by altering the oxidation conditions or by using a sacrificial silicon layer oxidation process. Ni Schottky barrier diodes fabricated on the 4H-SiC surface after removal of the oxide, displayed slightly higher ideality factors than those of diodes fabricated on untreated 4H-SiC samples.


Sign in / Sign up

Export Citation Format

Share Document