The Phase Formation Sequence In Titanium-Silicon Thin Films

1985 ◽  
Vol 54 ◽  
Author(s):  
Robert Beyers ◽  
Robert Sinclair

ABSTRACTThe reliable use of TiSi2 in integrated circuit metallizations will depend in part on an intimate knowledge of the effects of processing variables — such as annealing time, temperature, and ambient — on the phase formation sequence. For this reason, transmission electron microscopy has been used to investigate the formation of TiSi2 thin films on silicon substrates [1]. For films formed either by reacting titanium with a silicon substrate or by sintering a codeposited (Ti + 2 Si) mixture, we find that a high resistivity (∼60 μΩcm), metastable phase — TiSi2(C49 or ZrSi2 structure) — forms prior to the desired low resistivity (∼15 μΩcm), equilibrium phase — TiSi2(C54 structure). In titanium-silicon diffusion couples, a thin layer of TiSi is also present on top of the metastable TiSi2- For processing temperatures above 550°C, the available data suggest that the metastable TiSi2 forms first and acts as a template for subsequent nucleation of the TiSi phase. In codeposited (Ti + 2 Si) films, TiSi2(C49 structure) is the only intermediate phase. The temperature at which the C49 structure transforms to the C54 structure increases significantly as the film impurity content increases. Differences in earlier reports of TiSi2 formation [2–5] appear to be resolved if x-ray diffraction peaks attributed to Ti5Si3 and TiSi were actually from the metastable TiSi2

2016 ◽  
Vol 17 (1) ◽  
pp. 210-219 ◽  
Author(s):  
Keke Chang ◽  
Denis Music ◽  
Moritz to Baben ◽  
Dennis Lange ◽  
Hamid Bolvardi ◽  
...  

1991 ◽  
Vol 230 ◽  
Author(s):  
J. B. Rubin ◽  
R. B. Schwarz

AbstractWe determine the glass forming range (GFR) of co-deposited Ni1−xZrx (0 < x < 1) thin films by measuring their electrical resistance during in situ constant-heating-rate anneals. The measured GFR is continuous for 0.10 < x < 0.87. We calculate the GFR of Ni-Zr melts as a function of composition and cooling rate using homogeneous nucleation theory and a published CALPHAD-type thermodynamic modeling of the equilibrium phase diagram. Assuming that the main competition to the retention of the amorphous structure during the cooling of the liquid comes from the partitionless crystallization of the terminal solid solutions, we calculate that for dT/dt = 1012 K s−1, the GFR extends to x = 0.05 and x = 0.96. Better agreement with the measured values is obtained assuming a lower ‘effective’ cooling rate during the condensation of the films.


1994 ◽  
Vol 343 ◽  
Author(s):  
T.I. Selinder ◽  
D.J. Miller ◽  
K.E. Gray ◽  
M.A. Beno ◽  
G.S. Knapp

ABSTRACTInvestigation of the formation of new metastable phases in alloy thin films requires ways of quickly determining the crystalline structure of samples with different compositions. We report a novel technique for acquiring structural information from films intentionally grown with a composition gradient. For example, binary metal alloy films were deposited using a phase-spread sputtering method. In this way essentially the entire composition range could be grown in a single deposition. By using a narrow incident x-ray beam and a translating sample stage combined with a position sensitive x-ray detector technique, detailed information of the metastable phase diagram can be obtained rapidly. Compositional resolution of the order of ±0.2% can be achieved, and is limited by the brightness of the x-ray source. Initial results from studies of phase formation in Zr-Ta alloys will be presented. Extensions of the analysis technique to ternary systems will be discussed.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Aparna Saksena ◽  
Yu-Chuan Chien ◽  
Keke Chang ◽  
Pauline Kümmerl ◽  
Marcus Hans ◽  
...  

1991 ◽  
Vol 230 ◽  
Author(s):  
Katayun Barmak ◽  
Kevin R. Coffey ◽  
David A. Rudman ◽  
Simon Foner

AbstractWe investigated the phase formation sequence in the reaction of multilayer thin films of Nb/Al with overall compositions of 25 and 33 at.% AI. We report novel phenomena which distinguish thin-film reactions unequivocally from those in bulk systems. For sufficiently thin layers composition and stability of product phases are found to deviate significantly from that predicted from the equilibrium phase diagram. We demonstrate that in the Nb/Al system the length scales below which such deviations occur is about 150 nm. We believe that these phenomena occur due to the importance of grain boundary diffusion and hence microstructure in these thin films.


1987 ◽  
Vol 22 (7) ◽  
pp. 2346-2350 ◽  
Author(s):  
F. Catalina ◽  
C. N. Afonso ◽  
M. C. Quintana ◽  
C. Ortiz

Sign in / Sign up

Export Citation Format

Share Document