Reactivity of Carbonaceous Anodes Used in Lithium-ion Batteries, Part I: Correlation of Structural Parameters and Reactivity

1998 ◽  
Vol 548 ◽  
Author(s):  
G. A. Nazri ◽  
B. Yebka ◽  
M. Nazri ◽  
D. Curtis ◽  
K. Kinoshita ◽  
...  

ABSTRACTCarbonaceous anodes are the most practical elecrode for application in lithium-ion battery, mainly due to their low cost, flexibility for modification to achieve high energy capacity and high rate capability, abundance and environmentally uniquencess. Despite superior advantages of carbonaceous anodes vs other alternative anode and metallic lithium, there is considerable reactivity of lithiated graphite with organic electrolytes, which is a major safety concern. In this work, we report the nature of gaceous species generated on various carbonaceous anodes during initial charge-discharge cycling. The correlation between structural parameters of carbonaceous materials and their irreversible capacity loss have been investigated. Structural parameters have been studied using x-ray diffraction, Raman spectroscopy, and scanning and transmission electron microscopy. We have found a direct correlation between crystal morphology, degree of disorder, degree of graphitisation and the irreversible capacity loss. There is also a direct correlation between the irrversible capacity loss and the volume of gas generated during initial charge- disharge cycling. Results also show the importance of removing adsorbed and trapped gases in addition to removal of bonded impurities, such as functional groups from carbonaceous electrode before fabrication of batteries.Particular attention is given on thermal analysis for different graphite compounds and the influence of different parameters and conditions: nature of graphite in term of specific surface area, degree of graphitization and the length of microcristallites, degree of intercalation, nature of electrolytes on irreversible capacity loss and volume of gases generated during the initial charge-discharge cycles.

2019 ◽  
Vol 953 ◽  
pp. 121-126
Author(s):  
Zhe Chen ◽  
Quan Fang Chen ◽  
Sha Ne Zhang ◽  
Guo Dong Xu ◽  
Mao You Lin ◽  
...  

High energy density and rechargeable lithium ion batteries are attracting widely interest in renewable energy fields. The preparation of the high performance materials for electrodes has been regarded as the most challenging and innovative aspect. By utilizing a facile combustion synthesis method, pure nanostructure LiNi0.5Mn1.5O4 cathode material for lithium ion batteries were successfully fabricated. The crystal phase of the samples were characterized by X-Ray Diffraction, and micro-morphology as well as electrochemistry properties were also evaluated using FE-SEM, electrochemical charge-discharge test. The result shows the fabricated LiNi0.5Mn1.5O4 cathode materials had outstanding crystallinity and near-spherical morphologies. That obtained LiNi0.5Mn1.5O4 samples delivered an initial discharge capacity of 137.2 mAhg-1 at the 0.1 C together with excellent cycling stability and rate capability as positive electrodes in a lithium cell. The superior electrochemical performance of the as-prepared samples are owing to nanostructure particles possessing the shorter diffusion path for Li+ transport, and the nanostructure lead to large contact area to effectively improve the charge/discharge properties and the rate property. It is demonstrated that the as-prepared nanostructure LiNi0.5Mn1.5O4 samples have potential as cathode materials of lithium-ion battery for future new energy vehicles.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1602 ◽  
Author(s):  
Jun-Ping Hu ◽  
Hang Sheng ◽  
Qi Deng ◽  
Qiang Ma ◽  
Jun Liu ◽  
...  

LiNixCoyMnzO2 (LNCM)-layered materials are considered the most promising cathode for high-energy lithium ion batteries, but suffer from poor rate capability and short lifecycle. In addition, the LiNi1/3Co1/3Mn1/3O2 (NCM 111) is considered one of the most widely used LNCM cathodes because of its high energy density and good safety. Herein, a kind of NCM 111 with semi-closed structure was designed by controlling the amount of urea, which possesses high rate capability and long lifespan, exhibiting 140.9 mAh·g−1 at 0.85 A·g−1 and 114.3 mAh·g−1 at 1.70 A·g−1, respectively. The semi-closed structure is conducive to the infiltration of electrolytes and fast lithium ion-transfer inside the electrode material, thus improving the rate performance of the battery. Our work may provide an effective strategy for designing layered-cathode materials with high rate capability.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1299
Author(s):  
Jaeho Choi ◽  
Woo Jin Byun ◽  
DongHwan Kang ◽  
Jung Kyoo Lee

A mesoporous MnOx network (MMN) structure and MMN/C composites were prepared and evaluated as anodes for high-energy and high-rate lithium-ion batteries (LIB) in comparison to typical manganese oxide nanoparticle (MnNP) and graphite anodes, not only in a half-cell but also in a full-cell configuration (assembled with an NCM523, LiNi0.5Co0.2Mn0.3O2, cathode). With the mesoporous features of the MMN, the MMN/C exhibited a high capacity (approximately 720 mAh g−1 at 100 mA g−1) and an excellent cycling stability at low electrode resistance compared to the MnNP/C composite. The MMN/C composite also showed much greater rate responses than the graphite anode. Owing to the inherent high discharge (de-lithiation) voltage of the MMN/C than graphite as anodes, however, the MMN‖NCM523 full cell showed approximately 87.4% of the specific energy density of the Gr‖NCM523 at 0.2 C. At high current density above 0.2 C, the MMN‖NCM523 cell delivered much higher energy than the Gr‖NCM523 mainly due to the excellent rate capability of the MMN/C anode. Therefore, we have demonstrated that the stabilized and high-capacity MMN/C composite can be successfully employed as anodes in LIB cells for high-rate applications.


2020 ◽  
Vol 20 (11) ◽  
pp. 6815-6820
Author(s):  
Quoc Hanh Nguyen ◽  
Seongjoon So ◽  
Jaehyun Hur

A nanostructured ZnTe–TiO2–C composite is synthesized, via a two-step high-energy mechanical milling process, for use as a new promising anode material in Li-ion batteries (LIBs). X-ray diffraction and X-ray photoelectron spectroscopy results confirm the successful formation of ZnTe alloy and rutile TiO2 phases in the composites using ZnO, Te, Ti, and C as the starting materials. Scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping measurements further reveal that ZnTe and TiO2 nanocrystals are uniformly dispersed in an amorphous carbon matrix. The electrochemical performances of ZnTe–TiO2–C and other control samples were investigated. Compared to ZnTe–TiO2 and ZnTe-C composites, the ZnTe– TiO2–C nanocomposite exhibits better performance, thereby delivering a high reversible capacity of 561 mAh g−1 over 100 cycles and high rate capability at a high current density of 5 A g−1 (79% capacity retention of its capacity at 0.1 A g−1). Furthermore, the long-term cyclic performance of ZnTe–TiO2–C at a current density of 0.5 A g−1 shows excellent reversible capacity of 528 mAh g−1 after 600 cycles. This improvement can be attributed to the presence of a TiO2-C hybrid matrix, which acts as a buffering matrix that effectively mitigates the large volume changes of active ZnTe during repeated cycling. Overall, the ZnTe–TiO2–C nanocomposite is a potential candidate for high-performance anode materials in LIBs.


2020 ◽  
Vol 9 (1) ◽  
pp. 1350-1358
Author(s):  
Qing Zhang ◽  
Zongfeng Sha ◽  
Xun Cui ◽  
Shengqiang Qiu ◽  
Chengen He ◽  
...  

Abstract Commercial LiFePO4 (LFP) electrode still cannot meet the demand of high energy density lithium-ion batteries as a result of its low theoretical specific capacity (170 mA h g−1). Instead of traditional electrochemical inert polyvinylidene fluoride (PVDF), the incorporation of multifunctional polymeric binder becomes a possible strategy to overcome the bottleneck of LFP cathode. Herein, a novel polyimide (PI) binder was synthesized through a facile hydrothermal polymerization route. The PI binder exhibits better connection between active particles with uniform dispersion than that of PVDF. The multifunctional PI binder not only shows well dispersion stability in the organic electrolyte, but also contributes to extra capacity because of the existence of electrochemical active carbonyl groups in the polymer chain. Besides, the high intrinsic ion conductivity of PI also results in promoted ion transfer kinetic. Consequently, the LFP cathode using PI binder (LFP–PI) shows larger capacity and better rate capability than LFP cathode with PVDF binder (LFP–PVDF). Meanwhile, the superior binding ability also endows LFP–PI with great cycling stability compared to the LFP–PVDF electrode.


2015 ◽  
Vol 3 (45) ◽  
pp. 22739-22749 ◽  
Author(s):  
Xi Cao ◽  
Xiuyun Chuan ◽  
Robert C. Massé ◽  
Dubin Huang ◽  
Shuang Li ◽  
...  

A novel C/SiO2 composite with a carbon–silica–carbon (C-mcms) three layer structure was synthesized and evaluated as an anode material for high-energy lithium ion batteries. The C-mcms exhibits an excellent capacity of about 1055 mA h g−1 at a current density of 500 mA g−1 after 150 cycles without detectable decay, and high-rate capability.


2015 ◽  
Vol 3 (18) ◽  
pp. 10038-10044 ◽  
Author(s):  
Tongbin Lan ◽  
Jie Dou ◽  
Fengyan Xie ◽  
Peixun Xiong ◽  
Mingdeng Wei

Ultrathin TiO2-B nanowires with the most open channels exhibited large reversible lithium-ion charge–discharge capacity, excellent cycling stability and high-rate capability.


2021 ◽  
pp. 2150004
Author(s):  
Taolin Zhao ◽  
Liyao Chang ◽  
Rixin Ji

Generally, the optimization of synthesis conditions has great influence on the properties of the electrode materials for lithium-ion batteries (LIBs). Nowadays, Li-rich manganese-based cathode materials with high capacity are still suffering from low first charge/discharge capacity and poor high-rate capability. In this work, Li[Li[Formula: see text]Fe[Formula: see text]Ni[Formula: see text]Mn[Formula: see text]]O2 has been successfully synthesized by hydroxide co-precipitation method, and the effect of calcination temperature on the material characteristics and electrochemical performance has been investigated. The results show that with the increase of calcination temperature, the layered structure of Li-rich material becomes better. When the calcination temperature is 800[Formula: see text]C, the prepared material exhibits the most excellent electrochemical properties, including high first charge/discharge specific capacity of 366.6/251.9 mAh g[Formula: see text] and good high-rate capability. It is expected that the results of this study can lay a solid foundation for the subsequent research on the modification of this material.


2017 ◽  
Vol 351 ◽  
pp. 35-44 ◽  
Author(s):  
Giulio Gabrielli ◽  
Mario Marinaro ◽  
Marilena Mancini ◽  
Peter Axmann ◽  
Margret Wohlfahrt-Mehrens

Sign in / Sign up

Export Citation Format

Share Document