The mechanical properties of pure iron tested in compression over the temperature range 2 to 293 °K

The mechanical properties of pure iron single crystals and of polycrystalline specimens of a zone-refined iron have been measured in compression over the temperature and strain rate ranges 2.2 to 293 °K and 7 x 10 -7 to 7 x 10 -3 s -1 respectively. Various yield stress parameters were determined as functions of both temperature and strain rate, and the reversible changes in flow stress produced by isothermal changes of strain rate or by changes of temperature at constant strain rate were also measured as functions of temperature, strain and strain rate. Both the temperature variation of the flow stress and the strain rate sensitivity of the flow stress were generally identical for the single crystals ( ca. 0.005/M carbon) and the polycrystalline specimens ( ca. 9/M carbon). At low temperatures, the temperature dependence of the yield stress was smaller than that of the flow stress at high strains, probably because of the effects of mechanical twinning, but once again the behaviour of single and polycrystalline specimens was very similar. Below 10 °K, both the flow stress and the extrapolated yield stress were independent of temperature. The results show that macroscopic yielding and flow at low temperatures are both governed by the same deformation mechanism, which is not very impurity sensitive, even in the very low carbon range covered by the experiments. The flow stress near 0 °K is ca. 5.8 x 10 -3 u where [i is the shear modulus. On the basis of a model for thermally activated flow, the activation volume at low temperatures (high stresses) is found to be ca. 5 b 3 . The exponent in the empirical power law for the dislocation velocity against stress relation is ca. 3 near room temperature, but becomes quite large at low temperatures. The results indicate that macroscopic deformation at low temperatures is governed by some kind of lattice frictional stress (Peierls-Nabarro force) acting on dislocations.

1969 ◽  
Vol 8 (54) ◽  
pp. 463-473 ◽  
Author(s):  
S. J. Jones ◽  
J. W. Glen

AbstractResults obtained from tensile and compressive tests on pure ice single crystals at various temperatures down to −90°C are reported. At −50°C tensile creep tests give a continually increasing creep rate until fracture, as observed at higher temperatures. The stress dependence of the strain-rate is discussed. Fracture stress increases with decreasing temperature. Results from constant strain-rate compressive tests are compared with theoretical curves computed from Johnston’s (1962) theory of dislocation multiplication. A dislocation velocity of the order of 0.5×10−8 m s−1 is deduced for ice at −50°C.


1994 ◽  
Vol 364 ◽  
Author(s):  
S. S. Ezz ◽  
Y. Q. Sun ◽  
P. B. Hirsch

AbstractThe strain rate sensitivity ß of the flow stress τ is associated with workhardening and β=(δτ/δln ε) is proportional to the workhardening increment τh = τ - τy, where τy is the strain rate independent yield stress. The temperature dependence of β/τh reflects changes in the rate controlling mechanism. At intermediate and high temperatures, the hardening correlates with the density of [101] dislocations on (010). The nature of the local obstacles at room temperature is not established.


1969 ◽  
Vol 8 (54) ◽  
pp. 463-473 ◽  
Author(s):  
S. J. Jones ◽  
J. W. Glen

Abstract Results obtained from tensile and compressive tests on pure ice single crystals at various temperatures down to −90°C are reported. At −50°C tensile creep tests give a continually increasing creep rate until fracture, as observed at higher temperatures. The stress dependence of the strain-rate is discussed. Fracture stress increases with decreasing temperature. Results from constant strain-rate compressive tests are compared with theoretical curves computed from Johnston’s (1962) theory of dislocation multiplication. A dislocation velocity of the order of 0.5×10−8 m s−1 is deduced for ice at −50°C.


1996 ◽  
Vol 460 ◽  
Author(s):  
M. Demura ◽  
T. Hirano

ABSTRACTThe strain-rate dependence of flow stress in single crystals of binary, stoichiometric Ni3Al was studied in the temperature region of the yield stress anomaly. Below 400 K, the steady-state flow stress was found to be independent of strain rate, though it changed temporarily when the strain rate was changed. The strain-rate insensitivity can be explained by assuming that the flow stress is controlled by the multiplication/immobilization of mobile dislocations.


1994 ◽  
Vol 364 ◽  
Author(s):  
B. Viguier ◽  
J. Bonneville ◽  
K. J. Hemker ◽  
J. L. Martin

AbstractMechanical properties of a polycrystalline single phased γ Ti47Al51Mn2 alloy were studied by compression tests in a wide range of temperature (100 K - 1300 K). We report, in this paper, the temperature dependence of both the flow stress and its strain rate sensitivity. These dependencies show the existence of three temperature domains corresponding to different dislocation motion mechanisms. The temperature dependence of the flow stress strain rate sensitivity is compared with values measured in single crystals1.


2019 ◽  
Vol 287 ◽  
pp. 3-7
Author(s):  
Yong Zhang ◽  
Qing Zhang ◽  
Yuan Tao Sun ◽  
Xian Rong Qin

The constitutive modeling of aluminum alloy under warm forming conditions generally considers the influence of temperature and strain rate. It has been shown by published flow stress curves of Al-Mg alloy that there is nearly no effect of strain rate on initial yield stress at various temperatures. However, most constitutive models ignored this phenomenon and may lead to inaccurate description. In order to capture the rate-independent initial yield stress, Peric model is modified via introducing plastic strain to multiply the strain rate, for eliminating the effect of strain rate when the plastic strain is zero. Other constitutive models including the Wagoner, modified Hockett–Sherby and Peric are also considered and compared. The results show that the modified Peric model could not only describe the temperature-and rate-dependent flow stress, but also capture the rate-independent initial yield stress, while the Wagoner, modified Hockett–Sherby and Peric model can only describe the temperature-and rate-dependent flow stress. Moreover, the modified Peric model could obtain proper static yield stress more naturally, and this property may have potential applications in rate-dependent simulations.


2000 ◽  
Vol 646 ◽  
Author(s):  
Haruyuki Inui ◽  
Koji Ishikawa ◽  
Masaharu Yamaguchi

ABSTRACTEffects of ternary additions on the deformation behavior of single crystals of MoSi2 with the hard [001] and soft [0 15 1] orientations have been investigated in compression and compression creep. The alloying elements studied include V, Cr, Nb and Al that form a C40 disilicide with Si and W and Re that form a C11b disilicide with Si. The addition of Al is found to decrease the yield strength of MoSi2 at all temperatures while the additions of V, Cr and Nb are found to decrease the yield strength at low temperatures and to increase the yield strength at high temperatures. In contrast, the additions of W and Re are found to increase the yield strength at all temperatures. The creep strain rate for the [001] orientation is significantly lower than that for the [0 15 1] orientation. The creep strain rate for both orientations is significantly improved by alloying with ternary elements such as Re and Nb.


1998 ◽  
Vol 552 ◽  
Author(s):  
B. Matterstock ◽  
G. Saada ◽  
J. Bonneville ◽  
J. L Martin

ABSTRACTThe characterisation of dislocation mechanisms in connection with macroscopic mechanical properties are usually performed through transient tests, such as strain-rate jumps, load relaxations or creep experiments. The present paper includes a careful and complete theoretical analysis of the relaxation and the creep kinetics. We experimentally show that the plastic strain-rate is continuous at the transition between constant strain-rate conditions and both load relaxation and creep test. The product of the plastic strain-rate at the onset of the transient test () with the characteristic time (tk) of the transient is found to be independent of , as theoretically expected. This is a clear indication that the assumptions underlying the theoretical analysis are relevant.


Sign in / Sign up

Export Citation Format

Share Document