Growth Evolution of (Zn,Cd)Se Quantum Dots Deduced from Spatially Resolved Structural and Optical Characterization

1999 ◽  
Vol 571 ◽  
Author(s):  
K. Leonard ◽  
D. Hommel ◽  
A. Stockmann ◽  
H. Selke ◽  
J. Seufert ◽  
...  

ABSTRACTThe growth mode of CdSe layers grown by migration enhanced epitaxy between ZnSe barriers has been investigated. In situ reflection high-energy electron diffraction shows a gradual transition to a three-dimensional growth mode which, however, is not accompanied by a change of the surface lattice constant. High-resolution transmission electron micrographs reveal a strong Cd diffusion, leading to ternary ZnCdSe quantum wells. Furthermore. composition fluctuations perpendicular to the growth direction on a nanometer scale are found already prior to the beginning of the growth mode transition. In the case of heterostructures containing a CdSe layer that has undergone the growth mode transition, micrographs show Cd-rich quantum dots with diameters of around 8 nm and heights of around 1.5 nm within a ternary quantum well. By spatially resolved photoluminescence the emission from single quantum dots could be observed. The polarization dependence of the emission from single dots indicates an asymmetric shape of the dots with certain preferential orientations along the [110] and [110] directions.

2003 ◽  
Vol 10 (04) ◽  
pp. 669-675
Author(s):  
F. S. Gard ◽  
J. D. Riley ◽  
R. Leckey ◽  
B. F. Usher

ZnSe epilayers have been grown under various Se/Zn atomic flux ratios in the range of 0.22–2.45 at a substrate temperature of 350°C on Zn pre-exposed GaAs (111) A surfaces. Real time reflection high energy electron diffraction (RHEED) observations have shown a transition from a two-dimensional (2D) to a three-dimensional (3D) growth mode. The transition time depends directly upon the growth rate. A detailed discussion is presented to explore the cause of this change in the growth mode.


2018 ◽  
Vol 60 (8) ◽  
pp. 1503
Author(s):  
Е.Л. Ивченко

AbstractExperimental and theoretical studies of circular polarization of photoluminescence of excitons (MCPL) in semiconductors placed in an external magnetic field are reviewed. The advantage of the MCPL method is its relative simplicity. In particular, it does not require spectral resolution of the Zeeman sublevels of an exciton and may be applied to a wide class of objects having broad photoluminescence spectral lines or bands: in bulk semiconductors with excitons localized on the defects of the crystal lattice and composition fluctuations, in structures with quantum wells and quantum dots of types I and II, in two-dimensional transition metals dichalcogenides and quantum microcavities. The basic mechanisms of the magnetic circular polarization of luminescence are considered. It is shown that either known mechanisms should be modified or additional mechanisms of the MCPL should be developed to describe the polarized photoluminescence in newly invented nanosystems.


2006 ◽  
Vol 924 ◽  
Author(s):  
Andrea Feltrin ◽  
Alexandre Freundlich

ABSTRACTThe strain distributions and of reflection high energy electron diffraction (RHEED) patterns of uncapped pyramidal shape InAs Stranski-Krastanov quantum dots fabricated on GaAs(001) substrate are investigated theoretically. The three dimensional strain anisotropy is computed with an atomistic elasticity approach, using inter-atomic Keating potentials and the strain energy is minimized using the conjugate gradient numerical method. RHEED images are predicted in the framework of the kinematical theory, by taking into account the refraction of the electron beam at the quantum dot/vacuum interface. Clear correlation between RHEED image features and quantum dot structural properties is established. The study stresses the potential of RHEED for future experimental real-time (during growth) detections and deciphering of strain anisotropies in quantum dots.


1996 ◽  
Vol 449 ◽  
Author(s):  
F. Scholz ◽  
V. HÄrle ◽  
F. Steuber ◽  
A. Sohmer ◽  
H. Bolay ◽  
...  

ABSTRACTGaInN/GaN heterostructures and quantum wells have been grown by low pressure metalorganic vapor phase epitaxy on sapphire using an AIN nucleation layer. We found a significant In incorporation only for growth temperatures of 700°C, although still very high In/Ga ratios in the gas phase had to be adjusted. The In content could be increased by reducing the H2/N2 flow ratio in the main carrier gas. GaInN layers typically show two lines in low temperature photoluminescence which are identified as excitonic-like (high energy peak) and impurity-related-like (low energy) by time-resolved spectroscopy. Quantum wells with a thickness between 8 and 0.5 nm showed only one emission line. The peak of the thinnest wells shows excitonic-like behaviour, whereas we found a smooth transition to an impurity-related-like type with increasing thickness. By scanning transmission electron microscopy studies we found indications for composition fluctuations in these thicker quantum wells which may cause localization effects for the excitons and thus be responsible for the observed optical spectra.


2009 ◽  
Vol 20 (18) ◽  
pp. 185401 ◽  
Author(s):  
I V Antonova ◽  
A G Cherkov ◽  
V A Skuratov ◽  
M S Kagan ◽  
J Jedrzejewski ◽  
...  

2008 ◽  
Vol 39 (3-4) ◽  
pp. 348-350 ◽  
Author(s):  
Z. Barticevic ◽  
M. Pacheco ◽  
C.A. Duque ◽  
L.E. Oliveira

Sign in / Sign up

Export Citation Format

Share Document