Ca Dopant Site Within Ion Implanted GaN Lattice

1999 ◽  
Vol 572 ◽  
Author(s):  
H. Kobayashi ◽  
W. M. Gibson

ABSTRACTWe have investigated the Ca dopant site within the GaN lattice using ion channeling in combination with Rutherford backscattering spectrometry (RBS), particle induced x ray emission (PIXE) and nuclear reaction analysis (NRA). Metalorganic chemical vapor deposition (MOCVD) grown GaN on c-plane sapphire substrates implanted with 40Ca at a dose of 1×1015 cm−2 with post-implant annealing were investigated. The channeling results indicate that more than 80% of Ca are near Ga sites even in as-implanted samples, however, they are displaced by ∼ 0.2 Å from the Ga sites and that the Ca goes to the exact Ga sites after annealing at 1100°C. We think that the displaced Ca in the as-implanted samples are electrically compensated due to formation of complex defects with donor like point defects, such as CaGa-VN and/or CaGa-GaN, and that CaGa becomes electrically active when these complex defects are broken and the point defects diffuse away with annealing at 1100°C.

2003 ◽  
Vol 18 (8) ◽  
pp. 1868-1876 ◽  
Author(s):  
Spyridon Skordas ◽  
Filippos Papadatos ◽  
Guillermo Nuesca ◽  
John J. Sullivan ◽  
Eric T. Eisenbraun ◽  
...  

A low-temperature metalorganic chemical vapor deposition process was developed and optimized, using a design of experiments approach, for the growth of ultrathin aluminum oxide (Al2O3) as a potential gate dielectric in emerging semiconductor device applications. The process used the aluminum β-diketonate metalorganic precursor [aluminum(III) 2,4-pentanedionate] and water as, respectively, the metal and oxygen source reactants to grow Al2O3 films over a temperature range from 250 to 450 °C. The resulting films were analyzed by x-ray photoelectron spectroscopy, x-ray diffraction measurements, Rutherford backscattering spectrometry, nuclear-reaction analysis for hydrogen profiling, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The as-deposited Al2O3 phase was amorphous and dense and exhibited carbon and hydrogen incorporation of, respectively, 1 and 10 at.%. Postannealing at 600 °C led to a reduction in hydrogen concentration to 1 at.%, while maintaining an amorphous Al2O3 matrix.


1995 ◽  
Vol 406 ◽  
Author(s):  
M. S. Gaffneyt ◽  
C. M. Reavesl ◽  
A. L Holmes ◽  
R. S. Smith ◽  
S. P. DenBaars

AbstractMetalorganic chemical vapor deposition (MOCVD) is a process used to manufacture electronic and optoelectronic devices that has traditionally lacked real-time growth monitoring and control. We have developed control strategies that incorporate monitors as real-time control sensors to improve MOCVD growth. An analog control system with an ultrasonic concentration monitor was used to reject bubbler concentration disturbances which exist under normal operation, during the growth of a four-period GaInAs/InP superlattice. Using X-ray diffraction, it was determined that the normally occurring concentration variations led to a wider GaInAs peak in the uncompensated growths as compared to the compensated growths, indicating that closed loop control improved GaInAs composition regulation. In further analysis of the X-ray diffraction curves, superlattice peaks were used as a measure of high crystalline quality. The compensated curve clearly displayed eight orders of satellite peaks, whereas the uncompensated curve shows little evidence of satellite peaks.


1994 ◽  
Vol 361 ◽  
Author(s):  
D.L. Kaiser ◽  
M.D. Vaudin ◽  
L.D. Rotter ◽  
Z.L. Wang ◽  
J.P. Cline ◽  
...  

ABSTRACTMetalorganic chemical vapor deposition (MOCVD) was used to deposit epitaxial BaTiO3 thin films on (100) MgO substrates at 600°C. The metalorganic precursors employed in the deposition experiments were hydrated Ba(thd)2 (thd = C11H19O2) and titanium isopropoxide. The films were analyzed by means of transmittance spectroscopy, wavelength dispersive x-ray spectrometry, secondary ion mass spectrometry depth profiling, x-ray diffraction, high resolution transmission electron microscopy, selected area electron diffraction, nanoscale energy dispersive x-ray spectrometry and second harmonic generation measurements. There was no evidence for interdiffusion between the film and substrate. The x-ray and electron diffraction studies showed that the films were oriented with the a-axis normal to the substrate surface, whereas second harmonic generation measurements showed that the films had some c-axis character.


2007 ◽  
Vol 539-543 ◽  
pp. 1230-1235 ◽  
Author(s):  
Hyoun Woo Kim ◽  
S.H. Shim

We have synthesized the high-density Ga2O3 nanowires on gold (Au)-coated silicon substrates using metalorganic chemical vapor deposition. The nanowires exhibited one-dimensional structures having circular cross sections with diameters in the range of 30-200 nm. The energy dispersive x-ray spectroscopy revealed that the nanowires contained elements of Ga and O, without Au-related impurities. X-ray diffraction analysis and high-resolution transmission electron microscopy showed that the Ga2O3 nanowires were crystalline.


Sign in / Sign up

Export Citation Format

Share Document