Effects of the Electronic Structure on the Stability of Metallic Superlattices. Semi-Emipirical Calculations of the Total Energy

1999 ◽  
Vol 584 ◽  
Author(s):  
A. M Mazzone

AbstractIn this work the total energy of metallic superlattices is evaluated at semi-empirical level. The superlattice has an heterogenous composition and it has two shapes, i.e.(i) two facingA/B wires and (ii) a hut-shaped island of the element A deposited on a rigid B substrate. The elements A and B are Ag, Cu, Pd, Pt and Fe. The calculations show the existence of competing bonding contributions. In fact, a strong bond arises from charge exchanges at the A/B interface and from the bulk-like bonds of interior atoms. On the contrary, surface atoms are undercoordinated and reduce the strength of bonding. These contributions act on opposite sense on the large structures and the geometry dependence of the binding energy suggests a self-limited growth, rather than Ostwald ripening.

1997 ◽  
Vol 491 ◽  
Author(s):  
A. Bere ◽  
A. Hairie ◽  
G. Nouet ◽  
E. Paumier

ABSTRACTThe semi-empirical tight-binding method is used to build up an interatomic potential in zinc. Using relaxed structures, the parameters are fitted to the lattice parameters, the elastic constants and the vacancy formation energy. The total energy calculation predicts the stability of the h.c.p. structure. The potential is used to calculate the energy of some extended defects: the basal stacking fault and two twin boundaries.


2001 ◽  
Vol 12 (08) ◽  
pp. 1147-1153 ◽  
Author(s):  
A. M. MAZZONE

The focus of this study is on the stability of grains of metallic oxides, i.e., TiO2 and SnO2 , with a rutile lattice. To this purpose, the grain binding and fragmentation energies have been evaluated quantum mechanically at semi-empirical level using the extended Debye–Hueckel approximation. The grain size and shape are variable and the shapes have been chosen to reproduce, with some approximation, realistic structures found in nanocrystalline technologies. The results show noticeable differences with respects to the known behavior of homonuclear structures. In fact, the grain stability generally increases with the cluster size, as in the homonuclear case. However, its primary dependence is on the oxygen content, rather than on the grain size. On the contrary, the density of states has a critical dependence on the cluster size and is almost equal for the two materials.


1995 ◽  
Vol 408 ◽  
Author(s):  
I. Dawson ◽  
P. D. Bristowe. ◽  
M. C. Payne ◽  
M-H. Lee

AbstractWe have used ab initio total energy plane wave pseudopotential methods to perform the first completely ab initio investigation of the atomic and electronic structure of a grain boundary in a transition metal oxide. The ∑ = 15 (210)[001] tilt boundary in rutile TiG2 is studied using the conjugate gradients iterative minimisation technique for performing total energy calculations within the LDA and pseudopotential approximations. The stability of the experimentally observed translation state of the boundary is confirmed, and some insight is gained into its electronic structure.


2019 ◽  
Author(s):  
Tatiana Woller ◽  
Ambar Banerjee ◽  
Nitai Sylvetsky ◽  
Xavier Deraet ◽  
Frank De Proft ◽  
...  

<p>Expanded porphyrins provide a versatile route to molecular switching devices due to their ability to shift between several π-conjugation topologies encoding distinct properties. Taking into account its size and huge conformational flexibility, DFT remains the workhorse for modeling such extended macrocycles. Nevertheless, the stability of Hückel and Möbius conformers depends on a complex interplay of different factors, such as hydrogen bonding, p···p stacking, steric effects, ring strain and electron delocalization. As a consequence, the selection of an exchange-correlation functional for describing the energy profile of topological switches is very difficult. For these reasons, we have examined the performance of a variety of wavefunction methods and density functionals for describing the thermochemistry and kinetics of topology interconversions across a wide range of macrocycles. Especially for hexa- and heptaphyrins, the Möbius structures have a pronouncedly stronger degree of static correlation than the Hückel and figure-eight structures, and as a result the relative energies of singly-twisted structures are a challenging test for electronic structure methods. Comparison of limited orbital space full CI calculations with CCSD(T) calculations within the same active spaces shows that post-CCSD(T) correlation contributions to relative energies are very minor. At the same time, relative energies are weakly sensitive to further basis set expansion, as proven by the minor energy differences between MP2/cc-pVDZ and explicitly correlated MP2-F12/cc-pVDZ-F12 calculations. Hence, our CCSD(T) reference values are reasonably well-converged in both 1-particle and n-particle spaces. While conventional MP2 and MP3 yield very poor results, SCS-MP2 and particularly SOS-MP2 and SCS-MP3 agree to better than 1 kcal mol<sup>-1</sup> with the CCSD(T) relative energies. Regarding DFT methods, only M06-2X provides relative errors close to chemical accuracy with a RMSD of 1.2 kcal mol<sup>-1</sup>. While the original DSD-PBEP86 double hybrid performs fairly poorly for these extended p-systems, the errors drop down to 2 kcal mol<sup>-1</sup> for the revised revDSD-PBEP86-NL, again showing that same-spin MP2-like correlation has a detrimental impact on performance like the SOS-MP2 results. </p>


Author(s):  
Nilanjan Roy ◽  
Sucharita Giri ◽  
Harshit ◽  
Partha P. Jana

Abstract The site preference and atomic ordering of the ternary Rh5Ga2As have been investigated using first-principles density functional theory (DFT). An interesting atomic ordering of two neighboring elements Ga and As reported in the structure of Rh5Ga2As by X-ray diffraction data only is confirmed by first-principles total-energy calculations. The previously reported experimental model with Ga/As ordering is indeed the most stable in the structure of Rh5Ga2As. The calculation detected that there is an obvious trend concerning the influence of the heteroatomic Rh–Ga/As contacts on the calculated total energy. Interestingly, the orderly distribution of As and Ga that is found in the binary GaAs (Zinc-blende structure type), retained to ternary Rh5Ga2As. The density of states (DOS) and Crystal Orbital Hamiltonian Population (COHP) are calculated to enlighten the stability and bonding characteristics in the structure of Rh5Ga2As. The bonding analysis also confirms that Rh–Ga/As short contacts are the major driving force towards the overall stability of the compound.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1637
Author(s):  
Yunjiao Zhao ◽  
Rui Liu ◽  
Cuiping Qi ◽  
Wen Li ◽  
Mohamed Rifky ◽  
...  

The active components in garlic essential oil are easily degradable, which limits its application in the food industry. Vegetable oils (VOs) were used to improve the stability of garlic essential oil (GEO) emulsion. The volatile compounds of GEO and its mixtures with vegetable oils (VOs), including corn oil (CO), soybean oil (SO), and olive oil (OO) indicated that GEO-VO mixtures had a higher percentage of Diallyl disulfide and Diallyl trisulfide than pure GEO. Adding an appropriate amount of VOs promoted the GEO emulsion (whey protein concentrate and inulin as the wall materials) stability in order of CO > SO > OO. Evaluation of the encapsulation efficiency, controlled release, and antimicrobial activity of GEO-VO microcapsules showed that the GEO was successfully entrapped and slowly released with active antibacterial activities on both E. coli and S. aureus. Collectively, these results implied that VOs, especially for 20% CO, improved the stability of GEO emulsions and the encapsulation efficiency of GEO microcapsules. The mechanism might be related to (1) the regulating effect of density difference between oil and water phases on prevention to gravitational separation, (2) the promotion to the compatibility of GEO and VOs to inhibit the phase separation caused by Ostwald ripening.


2009 ◽  
Vol 609 ◽  
pp. 239-242
Author(s):  
A.E. Merad ◽  
M.B. Kanoun

The Cr2AlC and V2AlC nanolayered ternary carbides are studied by performing APW-lo ab initio total energy calculations within the recent Wu-Cohen generalized gradient approximation GGA. Using full relaxation procedure of the volume and the atomic positions we obtained the structural parameters and electronic structure of the optimization hexagonal. Results were compared with the experimental ones. Interesting features are deduced. In fact, we have shown why these materials are conductors.


1970 ◽  
Vol 2 (4) ◽  
pp. 865-874 ◽  
Author(s):  
I. V. Abarenkov ◽  
A. V. Amosov ◽  
V. F. Bratsev ◽  
D. M. Yudin

Sign in / Sign up

Export Citation Format

Share Document