Local Potential at Atomically Abrupt Oxide Interfaces by Scanning Probe Microscopy

1999 ◽  
Vol 586 ◽  
Author(s):  
Sergei V. Kalinin ◽  
Dawn A. Bonnell

ABSTRACTElectrostatic force microscopy and scanning surface potential microscopy are combined to quantify nanometer scale field variations in the vicinity of grain boundaries in donor doped σ15 SrTiO3 bicrystals. An analytical electrostatic model is used to develop a procedure for determining interface potential from measurements made above the surface. Grain boundary potentials and depletion widths determined by both techniques are in excellent agreement despite the fundamental difference in imaging mechanisms. The comparison confirms the analytical approach and illustrates use of scanning probes to image interface properties.

2000 ◽  
Vol 6 (S2) ◽  
pp. 720-721
Author(s):  
Dawn A. Bonnell ◽  
Sergei V. Kalinin

A combination of electrostatic force microscopy (EFM) and scanning surface potential microscopy (SSPM) is used to quantify nanometer scale field variations for the general case of electronically inhomogeneous surfaces. The specific example illustrated here is the intersection of a Σ5 grain boundary in donor doped SrTiO3 intersecting the (100) surface. ‘The topographic structure is compared to the surface potential, the positive and the negative electrostatic force images in figure 1. The EFM contrast changes sign with the polarity of the applied bias, as expected for an electrostatic attractive/repulsive interaction. There is a significant localization of surface potential at the grain boundary that is manifest as a protrusion in the SPPM image.To quantify the properties at the surface, rather than above the surface where the measurements are acquired, a relationship connecting the sample-tip interaction is required. It has been shown that models based on simple geometric assumptions do not represent the behavior well.


1999 ◽  
Vol 584 ◽  
Author(s):  
J. T. Jones ◽  
P. M. Bridger ◽  
O. J. Marsh ◽  
T. C. McGill

AbstractIn this report, the local patterning of charge into CeO2/Si structures by scanning probe microscopy is examined. An electrostatic force microscope (EFM) has been used to write and image localized dots of charge on to double barrier CeO2/Si/CeO2/Si(lll) structures. By applying a large tip bias Vtip = 6 – 10 V and reducing the tip to sample separation to z = 3 – 5 nm for write times of t = 30 – 60 s, arrays of charge dots 60 – 250 nm FWHM have been written. The dependence of dot size and total stored charge on various writing parameters such as tip writing bias, tip to sample separation, and write time is examined. The total stored charge is found to be Q = 5 – 200 e per charge dot. These dots of charge are shown to be stable over periods of time greater than 24 hrs, with an initial charge decay time constant of τ ∼ 9.5 hrs followed by a period of much slower decay with τ > 24 hrs. Charge decay time constants are found to be dependent on the thickness of the lower CeO2 tunneling barrier.


2002 ◽  
Vol 756 ◽  
Author(s):  
Joseph W. Bullard ◽  
Richard L. Smith

ABSTRACTAtomic force microscopy was used to characterize the structural evolution of the V2O5(001) surface during the electrochemical cycling of lithium. With Li insertion, nanometer-scale pits develop at the V2O5(001) surface. The pits first appear as the composition of the crystal approaches Li0.0006V2O5. Pit nucleation and growth continue through further discharge, resulting in a micro-porous (001) surface morphology. During subsequent Li extraction, cracks develop along the V2O5 <010> axis. Surface regions in the vicinity of these cracks “swell” during ensuing lithiation reactions, suggesting that the cracks locally facilitate Li uptake.


Author(s):  
Christophe De Nardi ◽  
Romain Desplats ◽  
Philippe Perdu ◽  
Félix Beaudoin ◽  
Jean Luc Gauffier

Abstract A method to measure “on site” programmed charges in EEPROM devices is presented. Electrical Scanning Probe Microscopy (SPM) based techniques such as Electric Force Microscopy (EFM) and Scanning Kelvin Probe Microscopy (SKPM) are used to directly probe floating gate potentials. Both preparation and probing methods are discussed. Sample preparation to access floating gate/oxide interfaces at a few nanometers distance without discharging the gate proves to be the key problem, more than the probing technique itself. Applications are demonstrated on 128 kbit EEPROMs from ST Microelectronics and 64 kbit EEPROMs from Atmel.


2000 ◽  
Vol 6 (S2) ◽  
pp. 706-707
Author(s):  
Sergei V. Kalinin ◽  
Dawn A. Bonnell

Possible applications of ferroelectric materials in non-volatile memories, MEMS, microwave ceramics, PTCR devices and sensors draw significant interest to these materials. Operation of most of these devices relies heavily on the surface (FRAM and other thin-film devices) and interface (PTCR, varistors) properties of ferroeiectrics, particularly on the polarization and charge distribution in the surface or interface region. Electrostatic scanning probe techniques such as electrostatic force microscopy (EFM), scanning surface potential microscopy (SSPM) and piezoresponse imaging (PRI) can be successfully employed for the characterization of ferroelectric surfaces on the micron and submicron level. The former technique is based on the detection of the resonant frequency shift of mechanically driven cantilever, which is proportional to gradient of electrostatic force acting on the tip. The latter two techniques are based on the voltage modulation approach, i.e. during imaging the piezoelectric actuator driving the cantilever is disengaged and the AC bias is applied directly to conductive tip.


2018 ◽  
Vol 11 (05) ◽  
pp. 1830002 ◽  
Author(s):  
Wanheng Lu ◽  
Kaiyang Zeng

The structure-function relationship at the nanoscale is of great importance for many functional materials, such as metal oxides. To explore this relationship, Scanning Probe Microscopy (SPM)-based techniques are used as powerful and effective methods owing to their capability to investigate the local surface structures and multiple properties of the materials with a high spatial resolution. This paper gives an overview of SPM-based techniques for characterizing the electric properties of metal oxides with potential in the applications of electronics devices. Three types of SPM techniques, including conductive AFM ([Formula: see text]-AFM), Kelvin Probe Force Microscopy (KPFM), and Electrostatic Force Microscopy (EFM), are summarized with focus on their principles and advances in measuring the electronic transport, ionic dynamics, the work functions and the surface charges of oxides.


2013 ◽  
Vol 853 ◽  
pp. 619-624
Author(s):  
Natalia Lvova ◽  
K. Kravchuk ◽  
I. Shirokov

The automatic scratch geometrical parameters analysis algorithms based on the images obtained by scanning probe microscopy have been developed. We provide a description of the technique to determine the contact area and the scratch volume with and without account of the pile-ups. The developed algorithms are applied to measure the dynamic hardness by sclerometry on the submicron and nanometer scale.


COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 1-21 ◽  
Author(s):  
XIAN NING XIE ◽  
HONG JING CHUNG ◽  
ANDREW THYE SHEN WEE

Nanotechnology is vital to the fabrication of integrated circuits, memory devices, display units, biochips and biosensors. Scanning probe microscope (SPM) has emerged to be a unique tool for materials structuring and patterning with atomic and molecular resolution. SPM includes scanning tunneling microscopy (STM) and atomic force microscopy (AFM). In this chapter, we selectively discuss the atomic and molecular manipulation capabilities of STM nanolithography. As for AFM nanolithography, we focus on those nanopatterning techniques involving water and/or air when operated in ambient. The typical methods, mechanisms and applications of selected SPM nanolithographic techniques in nanoscale structuring and fabrication are reviewed.


1993 ◽  
Vol 318 ◽  
Author(s):  
James D. Kiely ◽  
Dawn A. Bonnell

ABSTRACTScanning Tunneling and Atomic Force Microscopy were used to characterize the topography of fractured Au /sapphire interfaces. Variance analysis which quantifies surface morphology was developed and applied to the characterization of the metal fracture surface of the metal/ceramic system. Fracture surface features related to plasticity were quantified and correlated to the fracture energy and energy release rate.


Sign in / Sign up

Export Citation Format

Share Document