UPS of a-Si:H: What is the energy of the Er 4f states?

2000 ◽  
Vol 609 ◽  
Author(s):  
Leandro R. Tessler ◽  
Cínthia Piamonteze ◽  
Ana Carola Iniguez ◽  
Abner de Siervo ◽  
Richard Landers ◽  
...  

ABSTRACTOne very important problem concerning erbium-doped silicon is the electronic structure of the Er3+ impurities. In particular, it is still not clear if the 4f levels can be treated as frozen core levels or their overlap with s and p states of their neighbors must be considered explicitly. For crystalline Si, the 4f levels have been supposed to be anywhere between 20 eV below the valence band and within the energy gap. In this paper we report on the first ultraviolet photoemission spectroscopy (UPS) measurements on Er-doped a-Si:H. Samples of a-Si:H<Er> with different Er contents (up to 1 at. % Er) were prepared by co-sputtering from a Si target partially covered with metallic Er platelets. In order to enhance the Er states relative to the Si and H states, the excitation energy was tuned between 40 and 140 eV with a synchrotron light source. At 140 eV excitation energy the cross-section of the Er 4f and 5p states is more than an order of magnitude higher than the cross section of the Si 3s or 3p states. As the Er concentration increases, a shoulder and then a peak appears at 10.0±0.5 eV binding energy. The intensity and width of this peak is well correlated with the Er concentration, and with the Er 5p and 5p½ levels at 26 and 32 eV binding energy, respectively. We attribute the peak at 10.0±0.5 eV binding energy to the Er 4f level. These are the only occupied states that can be related to the presence of Er, indicating that these levels are not valence states and consequently can be treated as frozen core levels.

2019 ◽  
Vol 204 ◽  
pp. 01015
Author(s):  
Yuriy Uzikov

ANKE@COSY data on the cross section of the reaction pp → {pp}sπ0, where {pp}s is the proton pair in the 1S 0 state at small excitation energy Epp = 0 – 3 MeV, obtained at beam energies 0.5 - 2.0 GeV are analyzed within the one-pion exchange model. The model involves the subprocess π0 p → π0 p and accounts for the final state pp-interaction. A broad maximum observed in the cross section of the reaction pp → {pp}sπ0 at 0.5 - 1.4 GeV in the forward direction is explained by this model as a dominant contribution of the isospin $\cfrac{3}{2}$ in the π0 p-scattering. The second bump in data at 2 GeV is underpredicted within this model by one order of magnitude. An explicit excitation of the Δ(1232)-isobar using the box-diagram is also considered in the region of the first maximum.


2009 ◽  
Vol 24 (02n03) ◽  
pp. 450-453
Author(s):  
◽  
T. SKORODKO ◽  
M. BASHKANOV ◽  
D. BOGOSLOWSKY ◽  
H. CALÉN ◽  
...  

The two-pion production in pp-collisions has been investigated in exclusive measurements from threshold up to Tp = 1.36 GeV . Total and differential cross sections have been obtained for the channels pnπ+π0, ppπ+π-, ppπ0π0 and also nnπ+π+. For intermediate incident energies Tp > 1 GeV , i.e. in the region, which is beyond the Roper excitation but at the onset of ΔΔ excitation the total ppπ0π0 cross section falls behind theoretical predictions by as much as an order of magnitude near 1.2 GeV, whereas the nnπ+π+ cross section is a factor of five larger than predicted. A model-unconstrained isospin decompostion of the cross section points to a significant contribution of an isospin 3/2 resonance other than the Δ(1232). As a possible candidate the Δ(1600) is discussed.


Author(s):  
E. Carrera ◽  
A. Pagani ◽  
M. Petrolo

This paper proposes an advanced approach to the analysis of reinforced-shell aircraft structures. This approach, denoted as Component-Wise (CW), is developed by using the Carrera Unified Formulation (CUF). CUF is a hierarchical formulation allowing for the straightforward implementation of any-order one-dimensional (1D) beam theories. Lagrange-like polynomials are used to discretize the displacement field on the cross-section of each component of the structure. Depending on the geometrical and material characteristics of the component, the capabilities of the model can be enhanced and the computational costs can be kept low through smart discretization strategies. The global mathematical model of complex structures (e.g. wings or fuselages) is obtained by assembling each component model at the cross-section level. Next, a classical 1D finite element (FE) formulation is used to develop numerical applications. It is shown that MSC/PATRAN can be used as pre- and post-processor for the CW models, whereas MSC/NASTRAN DMAP alters can be used to solve both static and dynamic problems. A number of typical aeronautical structures are analyzed and CW results are compared to classical beam theories (Euler-Bernoulli and Timoshenko), refined models and classical solid/shell FE solutions from the commercial code MSC/NASTRAN. The results highlight the enhanced capabilities of the proposed formulation. In fact, the CW approach is clearly the natural tool to analyze wing structures, since it leads to results that can be only obtained through three-dimensional elasticity (solid) elements whose computational costs are at least one-order of magnitude higher than CW models.


2005 ◽  
Vol 20 (16) ◽  
pp. 3617-3620
Author(s):  
◽  
T. Ziegler

Extending a previous analysis1 the double charmonium production [Formula: see text] and [Formula: see text] has been investigated with a data set of 155 fb-1 with the Belle detector. Theoretical predictions for the cross section are one order of magnitude lower than the measured value and this discrepancy is still not understood. In a very recent update with a dataset of 285 fb-1 strong evidence for a new charmonium state at a mass of 3.940 GeV was found.


1997 ◽  
Vol 12 (35) ◽  
pp. 2717-2723
Author(s):  
I. M. Dremin

It is shown that Sudakov form factors for a color dipole in a QCD-inspired model of leptoproduction of vector mesons reduce the value of the cross-section of the process by an order of magnitude. They suppress the large size quark–antiquark pairs and unequal sharing of energy among the components of the dipole. Some freedom in the choice of the model parameters is also discussed.


1973 ◽  
Vol 26 (5) ◽  
pp. 585 ◽  
Author(s):  
RS Hicks ◽  
BM Spicer

The cross section for photoneutron production in 181Ta has been measured from threshold to 28� 8 MeV using bremsstrahlung and direct neutron detection. Integrated between these limits, the absolute value of the cross section has been determined to be 2 '47 �O' 35 MeV. b. An examination of the cross section variation with excitation energy reveals the existence of the giant quadrupole resonance lying on the high excitation edge of the dipole peak. This provides additional evidence for the validity of the dynamic collective model. The present data do not support the existence of extensive fine structure below 17 MeV, as proposed by Ishkhanov et al. (1969).


1969 ◽  
Vol 47 (12) ◽  
pp. 1237-1248 ◽  
Author(s):  
E. I. Dashevskaya ◽  
A. I. Voronin ◽  
E. E. Nikitin

A mechanism is derived for nonresonant transfer of electronic excitation energy, induced in the process M*(2P3/2) + M(2S1/2) → M*(2P1/2) + M(2S1/2), where M and M* are identical alkali atoms in the ground and first excited states, respectively. Various types of interactions, responsible for the nonadiabatic combination of electronic states of the quasi molecule M2*, were considered, and their respective contributions to the cross section for excitation transfer were determined.


2000 ◽  
Vol 638 ◽  
Author(s):  
Yong Ho Ha ◽  
Sehun Kim ◽  
Dae Won Moon ◽  
Ji-Hong Jhe ◽  
Jung H. Shin

AbstractThe effect of varying the Si layer thickness on the Er3+ photoluminescence properties of Er-doped Si/SiO2 superlattice is investigated. We find that as the Si layer thickness is reduced from 3.6 nm down to a monolayer of Si, the Er3+ luminescence intensity increases by over an order of magnitude. Temperature dependence of the Er3+ luminescence intensity and time-resolved measurement of Er3+ luminescence intensity identify the increase in the excitation rate as the likely cause for such an increase, and underscore the importance of the Si/SiO2 interface in determining the Er3+ luminescence properties.


Classical trajectory calculations have been used to calculate the cross-section (and hence the rate constant) for the recombination of hydrogen atoms on a third hydrogen atom, in the temperature range 500–6000 K. The model involves the stabilization of a quasi-bound molecule in an encounter with the third atom. The results indicate that the cross-section for direct stabilization is small and insensitive to the relative velocity, whereas the cross-section for exchange stabilization is large at low velocities and decreases rapidly as the relative velocity is increased. The calculated rate constant, although of the right order of magnitude at 500 K, does not exhibit the anomalous features previously observed experimentally at higher temperatures.


Sign in / Sign up

Export Citation Format

Share Document