Effect of Hydrogen Radical on Properties of Hydrogen in Hydrogenated Microcrystalline Silicon

2000 ◽  
Vol 609 ◽  
Author(s):  
Takashi Itoh ◽  
Noriyuki Yamana ◽  
Hiroki Inouchi ◽  
Norimitsu Yoshida ◽  
Hidekuni Harada ◽  
...  

ABSTRACTHydrogenated microcrystalline silicon (μc-Si:H) films are prepared by hot-wire assisted plasma enhanced chemical vapor deposition, which controls the hydrogen radical density by filament temperatures, Tf, without changing other conditions. The effect of hydrogen radical on the properties of incorporated hydrogen into μc-Si:H films is studied using infrared absorption and gas effusion spectroscopies. The hydrogen concentration decreases with increasing Tf. The crystalline volume fraction, Xc, increases with Tf and shows a peak at Tf of 1850 °C. Integrated intensities of the modes near 2000 and 2100 cm-1 decrease with increasing Tf. Integrated intensity of the mode near 880 cm-1 shows almost same tendency of Xc. The effect of hydrogen radical on the properties of incorporated hydrogen into μc-Si:H films is discussed.

2007 ◽  
Vol 989 ◽  
Author(s):  
Kyung-Bae Park ◽  
Ji-Sim Jung ◽  
Jong-Man Kim ◽  
Myung-kwan Ryu ◽  
Sang-Yoon Lee ◽  
...  

AbstractMicrocrystalline silicon was deposited on glass by standard plasma enhanced chemical vapor deposition using H2 diluted SiH4. Raman spectroscopy indicated a crystalline volume fraction of as high as 40% in films deposited at a substrate temperature 350oC. The deposition rate in films was as high as 10Å/sec. This process produced ¥ìc-Si TFTs with both an electron mobility of 10.9cm2/Vs, a threshold voltage of 1.2V, a subthreshold slop of 0.5V/dec at n-channel TFTs and a hole mobility of 3.2cm2/Vs, a threshold voltage of -5V, a subthreshold slop of 0.42V/dec at p-channel TFTs without post-fabrication annealing.


1999 ◽  
Vol 557 ◽  
Author(s):  
D. Peiró ◽  
C. Voz ◽  
J. Bertomeu ◽  
J. Andreu ◽  
E. Martínez ◽  
...  

AbstractHydrogenated microcrystalline silicon films have been obtained by hot-wire chemical vapor deposition (HWCVD) in a silane and hydrogen mixture at low pressure (<5 × 10-2 mbar). The structure of the samples and the residual stress were characterised by X- ray diffraction (XRD). Raman spectroscopy was used to estimate the volume fraction of the crystalline phase, which is in the range of 86 % to 98%. The stress values range between 150 and -140 MPa. The mechanical properties were studied by nanoindentation. Unlike monocrystalline wafers, there is no evidence of abrupt changes in the force-penetration plot, which have been attributed to a pressure-induced phase transition. The hardness was 12.5 GPa for the best samples, which is close to that obtained for silicon wafers.


Sign in / Sign up

Export Citation Format

Share Document