Electron Energy-Loss Spectroscopy in a 400kV Transmission Electron Microscope (TEELS)

1985 ◽  
Vol 62 ◽  
Author(s):  
T. Oikawa ◽  
J. Hosoi ◽  
Y. Kokubo ◽  
Y. Bando ◽  
J. L. Lehman

ABSTRACTElectron energy-loss spectroscopy in the transmission electron microscopy (TEELS) is a powerful technique to investigate the “electron and atom interaction in specimen microareas”.This paper reports some experimental data of TEELS concerning specimen thickness effect and advantages of 400 kV TEM, and introduces newly developed digital processing of EELS spectra, which is a powerful technique to get the information from the specimen materials.

Author(s):  
Zhifeng Shao ◽  
Ruoya Ho ◽  
Andrew P. Somlyo

Electron energy loss spectroscopy (EELS) has been a powerful tool for high resolution studies of elemental distribution, as well as electronic structure, in thin samples. Its foundation for biological research has been laid out nearly two decades ago, and in the subsequent years it has been subjected to rigorous, but by no means extensive research. In particular, some problems unique to EELS of biological samples, have not been fully resolved. In this article we present a brief summary of recent methodological developments, related to biological applications of EELS, in our laboratory. The main purpose of this work was to maximize the signal to noise ratio (S/N) for trace elemental analysis at a minimum dose, in order to reduce the electron dose and/or time required for the acquisition of high resolution elemental maps of radiation sensitive biological materials.Based on the simple assumption of Poisson distribution of independently scattered electrons, it had been generally assumed that the optimum specimen thickness, at which the S/N is a maximum, must be the total inelastic mean free path of the beam electron in the sample.


Author(s):  
Nestor J. Zaluzec

The application of electron energy loss spectroscopy (EELS) to light element analysis is rapidly becoming an important aspect of the microcharacterization of solids in materials science, however relatively stringent requirements exist on the specimen thickness under which one can obtain EELS data due to the adverse effects of multiple inelastic scattering.1,2 This study was initiated to determine the limitations on quantitative analysis of EELS data due to specimen thickness.


Author(s):  
T. Dewolf ◽  
D. Cooper ◽  
N. Bernier ◽  
V. Delaye ◽  
A. Grenier ◽  
...  

Abstract Forming and breaking a nanometer-sized conductive area are commonly accepted as the physical phenomenon involved in the switching mechanism of oxide resistive random access memories (OxRRAM). This study investigates a state-of-the-art OxRRAM device by in-situ transmission electron microscopy (TEM). Combining high spatial resolution obtained with a very small probe scanned over the area of interest of the sample and chemical analyses with electron energy loss spectroscopy, the local chemical state of the device can be compared before and after applying an electrical bias. This in-situ approach allows simultaneous TEM observation and memory cell operation. After the in-situ forming, a filamentary migration of titanium within the dielectric hafnium dioxide layer has been evidenced. This migration may be at the origin of the conductive path responsible for the low and high resistive states of the memory.


2000 ◽  
Vol 6 (S2) ◽  
pp. 208-209
Author(s):  
Huifang Xu ◽  
Pingqiu Fu

Laihunite that has distorted olivine-type structure with ferric and ferrous irons and ordered distribution of vacancies was first discovered in a high-grade metamorphosed banded iron formation (BIF) [1, 2]. The laihunite coexisting with fayalite (Fe-olivine), magnetite, quartz, ferrosilite, garnet and hedenbergite, formed in the process of oxidation of fayalite [2, 3]. The structure refinement of 1-layer laihunite shows P21/b symmetry and ordered distribution of vacancies in half M1 sites of olivine structure [2, 3]. Early high-resolution transmission electron microscopy (HRTEM) study and HRTEM image simulation of the 1-layer laihunite verified the structure refinement [4].Specimens of weakly oxidized fayalite and laihunite containing fayalite islands collected from Xiaolaihe and Menjiagou of Liaoning Province, NE China, have been studied using selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), electron energy-loss spectroscopy (EELS), and X-ray energy-dispersive spectroscopy.


Author(s):  
R. Kumar ◽  
P.J. Phillips ◽  
R.F. Klie

AlxGa1-xN nanowires have promising applications in ultraviolet light emitting diodes (LEDs). However, these nanowires are not typical p-n junction semiconductors, but rather rely on varying concentrations of Al versus Ga to produce electron hole pairs. More information on the atomic structure is needed to better understand the properties of these nanowires. In this study, AlxGa1-xN nanowires were imaged using scanning transmission electron microscopy (STEM) and compared to computer simulated STEM images to obtain physical information on the nanowires. Electron energy-loss spectroscopy (EELS) and FEFF9 computer simulations were also performed to better understand the structural and chemical properties of the nanowires. Results from these simulations showed that changes in the chemical ordering of the nanowires were responsible for changes in intensity and resolution in the images. These intensity and resolution trends were not a result of interface effects. This will help to further characterize nanowires in the future.


Sign in / Sign up

Export Citation Format

Share Document