Sublimation Growth of 6H-SiC Boule on Various a-Plane Substrates

2000 ◽  
Vol 640 ◽  
Author(s):  
S. Nishino ◽  
T. Nishiguchi ◽  
Y. Masuda ◽  
M. Sasaki ◽  
S. Ohshima

ABSTRACTSublimation growth of 6H-SiC was performed on {1100} and {1120} substrates. The difference between the growth on {1100} plane and {1120} plane was observed. {1100} facet was almost flat and there were grooves oriented toward <1120> direction. The step bunching was observed on {1100} plane 5° off-axis. A lot of pits were introduced on {1120} plane of the crystal grown both on {1100} and {1120} substrates. Step flow growth toward <1120> direction created the pits on {1120} plane. It was important to grow crystal by layer by layer growth on {1120} plane. By changing the growth mode from step flow growth to layer by layer growth, pit on the {1120} plane may be reduced as same as CVD growth on {1120} plane. Growth temperature and C/Si ratio should be optimized to keep layer by layer growth.

2006 ◽  
Vol 21 (11) ◽  
pp. 2801-2809 ◽  
Author(s):  
C. Chen ◽  
M.C. Plante ◽  
C. Fradin ◽  
R.R. LaPierre

GaP–GaAsP segmented nanowires (NWs), with diameters ranging between 20 and 500 nm and lengths between 0.5 and 2 μm, were catalytically grown from Au particles on a GaAs (111)B substrate in a gas source molecular beam epitaxy system. The morphology of the NWs was either pencil-shaped with a tapered tip or rod-shaped with a constant diameter along the entire length. Stacking faults were observed for most NWs with diameters greater than 30 nm, but thinner ones tended to exhibit fewer defects. Moreover, stacking faults were more likely found in GaAsP than in GaP. The composition of the pencil NWs exhibited a core–shell structure at the interface region, and rod-shaped NWs resulted in planar and atomically abrupt heterointerfaces. A detailed growth mechanism is presented based on a layer-by-layer growth mode for the rod-shaped NWs and a step-flow growth mode for the tapered region of the pencil NWs.


Author(s):  
Lianghong Liu ◽  
B. Liu ◽  
Y. Shi ◽  
J.H. Edgar

The effect of substrate preparation on the sublimation growth of AlN at about 1800 °C and 400 torr on (0001) 6H-SiC was investigated. The AlN grew in the step flow growth mode on an off-axis 6H-SiC substrate with a 6H-SiC epilayer, an island growth mode on as-received substrates, and a 2-D growth mode on substrates first coated with an AlN epitaxial layer by MOCVD. Cracks in the deposited AlN crystal due to the lattice and thermal expansion coefficient mismatches were always observed by SEM and optical microscopy.


2013 ◽  
Vol 740-742 ◽  
pp. 201-204 ◽  
Author(s):  
Kanaparin Ariyawong ◽  
Valdas Jokubavicius ◽  
Rickard Liljedahl ◽  
Mikael Syväjärvi

The growth of homoepitaxial layers on off-oriented 6H-SiC substrates proceeds via step flow growth. Such epilayers can exhibit irregularities like step bunching, splicing or crossover of steps. The effects of the substrate off-orientation and growth temperature show an influence on formation of surface irregularities. The mean features seem to be given by the growth mode competition of two-dimensional growth to the step-flow growth.


2000 ◽  
Vol 639 ◽  
Author(s):  
Lianghong Liu ◽  
Bei Liu ◽  
Ying Shi ◽  
J. H. Edgar

ABSTRACTThe effect of substrate preparation on the sublimation growth of AlN on 6H-SiC was investigated at about 1800°C and 400 torr. Short and long-time sublimation growths of AlN indicated that the nucleation, growth mode, and defects formed depended on the substrate surface preparation. Growth on an off-axis 6H-SiC substrate with 6H-SiC epilayer was in the step flow growth mode in contrast to the island growth mode on as-received substrates, while the 2-D growth was achieved on substrates first coated with an AlN epitaxial layer. Cracks due to the lattice and mainly large thermal expansion coefficient mismatch were always observed in the deposited AlN crystal, as characterized by SEM and optical microscopy.


2003 ◽  
Vol 798 ◽  
Author(s):  
Jun Suda ◽  
Norio Onojima ◽  
Tsunenobu Kimoto ◽  
Hiroyuki Matsunami

ABSTRACTAlN was grown on 4H- or 6H-SiC (0001) on-axis substrates by plasma-assisted molecular beam epitaxy. By utilizing optimized SiC surface pretreatment, RHEED oscillations just after the growth of AlN were obtained with high reproducibility. This study focused on the growth kinetics of AlN and the correlation between kinetics and the crystalline quality of the grown layers. It was found that the growth mode changed from layer-by-layer to step-flow for high growth temperatures, while for lower temperatures the layer-by-layer growth mode persisted. The mechanism responsible for the change in growth mode is discussed. Symmetrical (0002) and asymmetrical (01–14) x-ray rocking curve measurements were carried out to evaluate the crystalline quality. For the (0002) peak, both high-temperature and low-temperature grown layers showed almost the same FWHM values. On the other hand, for the (01–14) peak, the FWHM of low-temperature grown AlN was much smaller (180 arcsec) than that of the high-temperature grown AlN (450 arcsec).


1993 ◽  
Vol 312 ◽  
Author(s):  
T. Kawai ◽  
H. Yonezu ◽  
Y. Ogasawara ◽  
D. Saito ◽  
K. Pak

AbstractThe segregation and interdiffusion of In atoms in the GaAs/InAs/GaAs heterostructures were investigated by secondary ion mass spectroscopy. When the 1 ML thick InAs layer was grown in a layer-by-layer growth mode with no dislocations, the segregation of In atoms became marked with the increase of the growth temperature. However, the segregation was observed even at relatively low growth temperature of 400°C in molecular beam epitaxy. It was found that the segregation was markedly enhanced by dislocations near the heterointerface when the thick InAs layers were grown in a three-dimensional island growth mode. The interdiffusion of In atoms toward the growth direction occurred after thermal annealing, which could be assisted by vacancies propagating from the film surface into epilayer. It became apparent that the interdiffusion was effectively suppressed by a thin AlAs layer inserted in the GaAs cap layer.


2003 ◽  
Vol 780 ◽  
Author(s):  
P. Thomas ◽  
E. Nabighian ◽  
M.C. Bartelt ◽  
C.Y. Fong ◽  
X.D. Zhu

AbstractWe studied adsorption, growth and desorption of Xe on Nb(110) using an in-situ obliqueincidence reflectivity difference (OI-RD) technique and low energy electron diffraction (LEED) from 32 K to 100 K. The results show that Xe grows a (111)-oriented film after a transition layer is formed on Nb(110). The transition layer consists of three layers. The first two layers are disordered with Xe-Xe separation significantly larger than the bulk value. The third monolayer forms a close packed (111) structure on top of the tensile-strained double layer and serves as a template for subsequent homoepitaxy. The adsorption of the first and the second layers are zeroth order with sticking coefficient close to one. Growth of the Xe(111) film on the transition layer proceeds in a step flow mode from 54K to 40K. At 40K, an incomplete layer-by-layer growth is observed while below 35K the growth proceeds in a multilayer mode.


1994 ◽  
Vol 341 ◽  
Author(s):  
E. S. Hellman ◽  
E. H. Hartford

AbstractMetastable solid-solutions in the MgO-CaO system grow readily on MgO at 300°C by molecular beam epitaxy. We observe RHEED oscillations indicating a layer-by-layer growth mode; in-plane orientation can be described by the Matthews theory of island rotations. Although some films start to unmix at 500°C, others have been observed to be stable up to 900°C. The Mgl-xCaxO solid solutions grow despite a larger miscibility gap in this system than in any system for which epitaxial solid solutions have been grown. We describe attempts to use these materials as adjustable-lattice constant epitaxial building blocks


2017 ◽  
Vol 478 ◽  
pp. 187-192 ◽  
Author(s):  
Konrad Bellmann ◽  
Udo W. Pohl ◽  
Christian Kuhn ◽  
Tim Wernicke ◽  
Michael Kneissl

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 291
Author(s):  
Alberto Perrotta ◽  
Julian Pilz ◽  
Roland Resel ◽  
Oliver Werzer ◽  
Anna Maria Coclite

Direct plasma enhanced-atomic layer deposition (PE-ALD) is adopted for the growth of ZnO on c-Si with native oxide at room temperature. The initial stages of growth both in terms of thickness evolution and crystallization onset are followed ex-situ by a combination of spectroscopic ellipsometry and X-ray based techniques (diffraction, reflectivity, and fluorescence). Differently from the growth mode usually reported for thermal ALD ZnO (i.e., substrate-inhibited island growth), the effect of plasma surface activation resulted in a substrate-enhanced island growth. A transient region of accelerated island formation was found within the first 2 nm of deposition, resulting in the growth of amorphous ZnO as witnessed with grazing incidence X-ray diffraction. After the islands coalesced and a continuous layer formed, the first crystallites were found to grow, starting the layer-by-layer growth mode. High-temperature ALD ZnO layers were also investigated in terms of crystallization onset, showing that layers are amorphous up to a thickness of 3 nm, irrespective of the deposition temperature and growth orientation.


Sign in / Sign up

Export Citation Format

Share Document