Either step-flow or layer-by-layer growth for AlN on SiC (0001) substrates

2003 ◽  
Vol 798 ◽  
Author(s):  
Jun Suda ◽  
Norio Onojima ◽  
Tsunenobu Kimoto ◽  
Hiroyuki Matsunami

ABSTRACTAlN was grown on 4H- or 6H-SiC (0001) on-axis substrates by plasma-assisted molecular beam epitaxy. By utilizing optimized SiC surface pretreatment, RHEED oscillations just after the growth of AlN were obtained with high reproducibility. This study focused on the growth kinetics of AlN and the correlation between kinetics and the crystalline quality of the grown layers. It was found that the growth mode changed from layer-by-layer to step-flow for high growth temperatures, while for lower temperatures the layer-by-layer growth mode persisted. The mechanism responsible for the change in growth mode is discussed. Symmetrical (0002) and asymmetrical (01–14) x-ray rocking curve measurements were carried out to evaluate the crystalline quality. For the (0002) peak, both high-temperature and low-temperature grown layers showed almost the same FWHM values. On the other hand, for the (01–14) peak, the FWHM of low-temperature grown AlN was much smaller (180 arcsec) than that of the high-temperature grown AlN (450 arcsec).

2000 ◽  
Vol 640 ◽  
Author(s):  
S. Nishino ◽  
T. Nishiguchi ◽  
Y. Masuda ◽  
M. Sasaki ◽  
S. Ohshima

ABSTRACTSublimation growth of 6H-SiC was performed on {1100} and {1120} substrates. The difference between the growth on {1100} plane and {1120} plane was observed. {1100} facet was almost flat and there were grooves oriented toward <1120> direction. The step bunching was observed on {1100} plane 5° off-axis. A lot of pits were introduced on {1120} plane of the crystal grown both on {1100} and {1120} substrates. Step flow growth toward <1120> direction created the pits on {1120} plane. It was important to grow crystal by layer by layer growth on {1120} plane. By changing the growth mode from step flow growth to layer by layer growth, pit on the {1120} plane may be reduced as same as CVD growth on {1120} plane. Growth temperature and C/Si ratio should be optimized to keep layer by layer growth.


2006 ◽  
Vol 21 (11) ◽  
pp. 2801-2809 ◽  
Author(s):  
C. Chen ◽  
M.C. Plante ◽  
C. Fradin ◽  
R.R. LaPierre

GaP–GaAsP segmented nanowires (NWs), with diameters ranging between 20 and 500 nm and lengths between 0.5 and 2 μm, were catalytically grown from Au particles on a GaAs (111)B substrate in a gas source molecular beam epitaxy system. The morphology of the NWs was either pencil-shaped with a tapered tip or rod-shaped with a constant diameter along the entire length. Stacking faults were observed for most NWs with diameters greater than 30 nm, but thinner ones tended to exhibit fewer defects. Moreover, stacking faults were more likely found in GaAsP than in GaP. The composition of the pencil NWs exhibited a core–shell structure at the interface region, and rod-shaped NWs resulted in planar and atomically abrupt heterointerfaces. A detailed growth mechanism is presented based on a layer-by-layer growth mode for the rod-shaped NWs and a step-flow growth mode for the tapered region of the pencil NWs.


2003 ◽  
Vol 780 ◽  
Author(s):  
P. Thomas ◽  
E. Nabighian ◽  
M.C. Bartelt ◽  
C.Y. Fong ◽  
X.D. Zhu

AbstractWe studied adsorption, growth and desorption of Xe on Nb(110) using an in-situ obliqueincidence reflectivity difference (OI-RD) technique and low energy electron diffraction (LEED) from 32 K to 100 K. The results show that Xe grows a (111)-oriented film after a transition layer is formed on Nb(110). The transition layer consists of three layers. The first two layers are disordered with Xe-Xe separation significantly larger than the bulk value. The third monolayer forms a close packed (111) structure on top of the tensile-strained double layer and serves as a template for subsequent homoepitaxy. The adsorption of the first and the second layers are zeroth order with sticking coefficient close to one. Growth of the Xe(111) film on the transition layer proceeds in a step flow mode from 54K to 40K. At 40K, an incomplete layer-by-layer growth is observed while below 35K the growth proceeds in a multilayer mode.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 928
Author(s):  
Yong Du ◽  
Zhenzhen Kong ◽  
Muhammet Toprak ◽  
Guilei Wang ◽  
Yuanhao Miao ◽  
...  

This work presents the growth of high-quality Ge epilayers on Si (001) substrates using a reduced pressure chemical vapor deposition (RPCVD) chamber. Based on the initial nucleation, a low temperature high temperature (LT-HT) two-step approach, we systematically investigate the nucleation time and surface topography, influence of a LT-Ge buffer layer thickness, a HT-Ge growth temperature, layer thickness, and high temperature thermal treatment on the morphological and crystalline quality of the Ge epilayers. It is also a unique study in the initial growth of Ge epitaxy; the start point of the experiments includes Stranski–Krastanov mode in which the Ge wet layer is initially formed and later the growth is developed to form nuclides. Afterwards, a two-dimensional Ge layer is formed from the coalescing of the nuclides. The evolution of the strain from the beginning stage of the growth up to the full Ge layer has been investigated. Material characterization results show that Ge epilayer with 400 nm LT-Ge buffer layer features at least the root mean square (RMS) value and it’s threading dislocation density (TDD) decreases by a factor of 2. In view of the 400 nm LT-Ge buffer layer, the 1000 nm Ge epilayer with HT-Ge growth temperature of 650 °C showed the best material quality, which is conducive to the merging of the crystals into a connected structure eventually forming a continuous and two-dimensional film. After increasing the thickness of Ge layer from 900 nm to 2000 nm, Ge surface roughness decreased first and then increased slowly (the RMS value for 1400 nm Ge layer was 0.81 nm). Finally, a high-temperature annealing process was carried out and high-quality Ge layer was obtained (TDD=2.78 × 107 cm−2). In addition, room temperature strong photoluminescence (PL) peak intensity and narrow full width at half maximum (11 meV) spectra further confirm the high crystalline quality of the Ge layer manufactured by this optimized process. This work highlights the inducing, increasing, and relaxing of the strain in the Ge buffer and the signature of the defect formation.


2021 ◽  
pp. 174751982098472
Author(s):  
Lalmi Khier ◽  
Lakel Abdelghani ◽  
Belahssen Okba ◽  
Djamel Maouche ◽  
Lakel Said

Kaolin M1 and M2 studied by X-ray diffraction focus on the mullite phase, which is the main phase present in both products. The Williamson–Hall and Warren–Averbach methods for determining the crystallite size and microstrains of integral breadth β are calculated by the FullProf program. The integral breadth ( β) is a mixture resulting from the microstrains and size effect, so this should be taken into account during the calculation. The Williamson–Hall chart determines whether the sample is affected by grain size or microstrain. It appears very clearly that the principal phase of the various sintered kaolins, mullite, is free from internal microstrains. It is the case of the mixtures fritted at low temperature (1200 °C) during 1 h and also the case of the mixtures of the type chamotte cooks with 1350 °C during very long times (several weeks). This result is very significant as it gives an element of explanation to a very significant quality of mullite: its mechanical resistance during uses at high temperature remains.


1994 ◽  
Vol 341 ◽  
Author(s):  
E. S. Hellman ◽  
E. H. Hartford

AbstractMetastable solid-solutions in the MgO-CaO system grow readily on MgO at 300°C by molecular beam epitaxy. We observe RHEED oscillations indicating a layer-by-layer growth mode; in-plane orientation can be described by the Matthews theory of island rotations. Although some films start to unmix at 500°C, others have been observed to be stable up to 900°C. The Mgl-xCaxO solid solutions grow despite a larger miscibility gap in this system than in any system for which epitaxial solid solutions have been grown. We describe attempts to use these materials as adjustable-lattice constant epitaxial building blocks


2008 ◽  
Vol 1068 ◽  
Author(s):  
Ewa Dumiszewska ◽  
Wlodek Strupinski ◽  
Piotr Caban ◽  
Marek Wesolowski ◽  
Dariusz Lenkiewicz ◽  
...  

ABSTRACTThe influence of growth temperature on oxygen incorporation into GaN epitaxial layers was studied. GaN layers deposited at low temperatures were characterized by much higher oxygen concentration than those deposited at high temperature typically used for epitaxial growth. GaN buffer layers (HT GaN) about 1 μm thick were deposited on GaN nucleation layers (NL) with various thicknesses. The influence of NL thickness on crystalline quality and oxygen concentration of HT GaN layers were studied using RBS and SIMS. With increasing thickness of NL the crystalline quality of GaN buffer layers deteriorates and the oxygen concentration increases. It was observed that oxygen atoms incorporated at low temperature in NL diffuse into GaN buffer layer during high temperature growth as a consequence GaN NL is the source for unintentional oxygen doping.


1993 ◽  
Vol 32 (Part 2, No. 2B) ◽  
pp. L236-L238 ◽  
Author(s):  
Kuninori Kitahara ◽  
Nobuyuki Ohtsuka ◽  
Toshihiko Ashino ◽  
Masashi Ozeki ◽  
Kazuo Nakajima

Sign in / Sign up

Export Citation Format

Share Document