Low Temperature Preparation of High-Quality Pb(Zr,Ti)O3 Films by Metal Organic Chemical Vapor Deposition with High Reproducibility

2001 ◽  
Vol 688 ◽  
Author(s):  
Hiroshi Funakubo ◽  
Kuniharu Nagashima ◽  
Masanori Aratani ◽  
Kouji Tokita ◽  
Takahiro Oikawa ◽  
...  

AbstractPb(Zr,Ti)O3 (PZT) is one of the most promising materials for ferroelectric random access memory (FeRAM) application. Among the various preparation methods, metalorganic chemical vapor deposition (MOCVD) has been recognized as a most important one to realize high density FeRAM because of its potential of high-step-coverage and large-area-uniformity of the film quality.In the present study, pulsed-MOCVD was developed in which a mixture of the source gases was pulsed introduced into reaction chamber with interval. By using this deposition technique, simultaneous improvements of the crystallinity, surface smoothness, and electrical property of the film have been reached by comparing to the conventional continuous gas-supplied MOCVD. Moreover, this film had larger remanent polarization (Pr) and lower leakage current density. This is owing to reevaporation of excess Pb element from the film and increase of migration on the surface of substrate during the interval time.This process is also very effective to decrease the deposition temperature of the film having high quality. In fact, the Pr and the leakage current density of polycrystalline Pb(Zr0.35Ti0.65)O3 film deposited at 415 °C were 41.4 μC/cm2 and on the order of 10−7 A/cm2 at 200 kV/cm. This Pr value was almost the same as that of the epitaxially grown film deposited at 415 °C with the same composition corrected for the orientation difference. This suggests that the polycrystalline PZT film prepared by pulsed-MOCVD had the epitaxial-grade ferroelectric properties even through the deposition temperature was as low as 415 °C. Moreover, large “process window” comparable to the process window at 580 °C, above 150 °C higher temperature and was widely used condition, was achieved even at 395°C by the optimization of the deposition condition.

1991 ◽  
Vol 69 (3-4) ◽  
pp. 165-169 ◽  
Author(s):  
T. T. Chau ◽  
S. R. Mejia ◽  
K. C. Kao

Silicon dioxide (SiO2) films were deposited by a new electron cyclotron resonance (ECR) microwave plasma enhanced chemical vapor deposition (PECVD) process at various deposition temperatures ranging from room temperaure (~25 °C) to 300 °C. The deposition rate increases with increasing deposition temperature and tends to become saturated as the deposition temperature approaches 250 °C, in contrast to the SiO2 films fabricated by the conventional ECR microwave PECVD process. The Fourier transform infrared results provide no evidence of hydrogen incorporation in the SiO2 films even when they were deposited at room temperature. Films deposited at temperatures higher than 270 °C exhibit an excellent electrical integrity that is comparable with high-quality SiO2 films grown thermally at 1000 °C. Films deposited at room temperature have a slightly higher refractive index and also high-leakage current though the films appear as good as those deposited at 300 °C. As the deposition temperature is increased, both the shoulder height of the Si—O stretching band and the leakage current decrease. The correlation between the film properties and the film growth mechanism is also discussed.


1994 ◽  
Vol 361 ◽  
Author(s):  
Hisato Yabuta ◽  
Koichi Takemura ◽  
Hiromu Yamaguchi ◽  
Shuji Sone ◽  
Toshiyuki Sakuma ◽  
...  

ABSTRACTSrTiO3 thin films with various compositions have been prepared on Pt coated sapphire substrates by electron cyclotron resonance plasma chemical vapor deposition at 450 °C and 600 °C. The stoichiometric (Sr/(Sr+Ti)=0.50) films have maximum dielectric constants (εr) of 190 for the 600 °C deposition and 170 for the 450 °C deposition. The dielectric constant decreases abruptly with increasing or decreasing the Sr/(Sr+Ti) value from the stoichiometry, especially for the 450 °C deposition. The Ti-rich films include titanium suboxide (TiOx). In the Sr-rich films, excess SrO is thought to be inserted into the SrO plane and TiO2 plane in SrTiO3. In addition, SrCO3 is included in Sr-rich films. The concentration of these impurities is greater for the 450 °C deposition than for the 600 °C deposition. The leakage current density increases with increasing the Sr/(Sr+Ti) value, and the leakage current density for the 450 °C deposition is larger than for the 600 °C deposition in the Sr-rich composition region. These impurity phases may be related to the higher leakage current density. These results suggest that precise composition control in stoichiometry is necessary to deposit SrTiO3 films with superior electrical properties.


1990 ◽  
Vol 209 ◽  
Author(s):  
Yoshihisa Fujisaki ◽  
Sumiko Sakai ◽  
Saburo Ataka ◽  
Kenji Shibata

ABSTRACTHigh quality GaAs/SiO2 MIS( Metal Insulator Semiconductor ) diodes were fabricated using (NH4)2S treatment and photo-assisted CVD( Chemical Vapor Deposition ). The density of states at the GaAs and SiO2 interface is the order of 1011 cm-2eV-1 throughout the forbidden energy range, which is smaller by the order of two than that of the MIS devices made by the conventional CVD process. The mechanism attributable to the interface improvement was investigated through XPS( X-ray Photoelectron Spectroscopy ) analyses.


ACS Nano ◽  
2015 ◽  
Vol 9 (1) ◽  
pp. 164-171 ◽  
Author(s):  
Dacheng Wei ◽  
Lan Peng ◽  
Menglin Li ◽  
Hongying Mao ◽  
Tianchao Niu ◽  
...  

2001 ◽  
Vol 689 ◽  
Author(s):  
Shara S. Shoup ◽  
Marvis K. White ◽  
Steve L. Krebs ◽  
Natalie Darnell ◽  
Adam C. King ◽  
...  

ABSTRACTThe innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. A buffer layer architecture of strontium titanate and ceria have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with high critical current density values. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm2. Work is currently in progress to combine both the buffer layer and superconductor technologies to produce high-quality coupons of HTS tape made entirely by the non-vacuum CCVD process.


Sign in / Sign up

Export Citation Format

Share Document