High Quality GaAs Mis Diodes With Very Low Surface State Density

1990 ◽  
Vol 209 ◽  
Author(s):  
Yoshihisa Fujisaki ◽  
Sumiko Sakai ◽  
Saburo Ataka ◽  
Kenji Shibata

ABSTRACTHigh quality GaAs/SiO2 MIS( Metal Insulator Semiconductor ) diodes were fabricated using (NH4)2S treatment and photo-assisted CVD( Chemical Vapor Deposition ). The density of states at the GaAs and SiO2 interface is the order of 1011 cm-2eV-1 throughout the forbidden energy range, which is smaller by the order of two than that of the MIS devices made by the conventional CVD process. The mechanism attributable to the interface improvement was investigated through XPS( X-ray Photoelectron Spectroscopy ) analyses.

2000 ◽  
Vol 611 ◽  
Author(s):  
Akira Izumi ◽  
Hidekazu Sato ◽  
Hideki Matsumura

ABSTRACTThis paper reports a procedure for low-temperature nitridation of silicon dioxide (SiO2) surfaces using species produced by catalytic decomposition of NH3 on heated tungsten in catalytic chemical vapor deposition (Cat-CVD) system. The surface of SiO2/Si(100) was nitrided at temperatures as low as 200°C. X-ray photoelectron spectroscopy measurements revealed that incorporated N atoms are bound to Si atoms and O atoms and located top-surface of SiO2.


1989 ◽  
Vol 168 ◽  
Author(s):  
Paul D. Stupik ◽  
Linda K. Cheatham ◽  
John J. Graham ◽  
Andrew R. Barron

AbstractChemical vapor deposition from (MeCp)2Nb(allyl) at atmospheric pressure yields niobium carbide films at temperatures as low as 300°C. X-ray photoelectron spectroscopy (XPS) studies indicate that the bulk films contain a carbide phase and a nearly stoichiometric ratio of niobium to carbon. The morphology of the films has been examined by scanning electron microscopy (SEM).


2006 ◽  
Vol 321-323 ◽  
pp. 1687-1690 ◽  
Author(s):  
Hee Joon Kim ◽  
Dong Young Jang ◽  
Prem Kumar Shishodia ◽  
Akira Yoshida

In the paper, zinc oxide (ZnO) thin films are deposited by plasma enhanced chemical vapor deposition (PECVD) at different substrate temperatures. The ZnO films are characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The analysis results indicate that highly crystalline films with high orientation can be obtained at a substrate temperature of 300 oC with 50 ml/min flow rate from Diethylzinc (DEZ). Furthermore, the investigation of optical property shows that ZnO films are transparent, and the peak transmittance in the visible region is as high as 85%.


2005 ◽  
Vol 480-481 ◽  
pp. 71-76 ◽  
Author(s):  
Jin Chun Jiang ◽  
Wen Juan Cheng ◽  
Yang Zhang ◽  
He Sun Zhu ◽  
De Zhong Shen

Carbon nitride films were grown on Si substrates by a microwave plasma chemical vapor deposition method, using mixture of N2, CH4 and H2 as precursor. Scanning electron microscopy shows that the films consisted of a large number of hexagonal crystallites. The dimension of the largest crystallite is about 3 µm. The X-ray photoelectron spectroscopy suggests that nitrogen and carbon in the films are bonded through hybridized sp2 and sp3 configurations. The X-ray diffraction pattern indicates that the major part of the films is composed of α-, β-, pseudocubic C3N4 and graphitic C3N4. The Raman peaks match well with the calculated Raman frequencies of α- and β-C3N4, revealing the formation of the α- and β-C3N4 phase.


2002 ◽  
Vol 716 ◽  
Author(s):  
Filippos Papadatos ◽  
Spyridon Skordas ◽  
Zubin Patel ◽  
Steven Consiglio ◽  
Eric Eisenbraun

AbstractIn this work, Ru and RuO2 films have been investigated for potential applications in emerging CMOS gate electrode and memory capacitor bottom electrode applications. Films were deposited on SiO2 using chemical vapor deposition (CVD) and low power plasma assisted CVD (PACVD) in a 200-mm wafer deposition cluster tool using a metal beta-diketonate precursor [Bis (2,2,6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium (II)]. Hydrogen and oxygen were employed as the reactive gases to deposit, respectively, Ru and RuO2, over a wafer temperature range from 320°C to 480°C. The resulting film properties were analyzed using cross-sectional scanning electron microscopy (CS-SEM), four point resistance probe, x-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS) and x-ray diffraction (XRD). Both Ru and RuO2 films could be deposited with minimal carbon concentration (∼5 at. %). The purity of the films was also reflected in the as-deposited resistivity of the films, which was as low as 47 μΩ-cm, and was strongly dependent on processing conditions. In order to assess thermal stability, the films were subsequently annealed in forming gas and oxygen ambients for 60 min at 650°C. It was observed that, generally speaking, CVD RuO2 films were stable, with respect to resistivity, in oxidizing ambients, while annealing in a reducing ambient resulted in significant film densification and reduction of the film resistivities to as low as 43 μΩ-cm. Ru films demonstrated good adhesion after anneals in oxidizing, but not in reducing ambients.


1998 ◽  
Vol 511 ◽  
Author(s):  
Catherine B. Labelle ◽  
Kenneth K. S. Lau ◽  
Karen K. Gleason

ABSTRACTPulsed plasma enhanced chemical vapor deposition films have been grown from C2H2F4, CH2F2, and CHCLF2. C-Is x-ray photoelectron spectroscopy (XPS) indicates a prevalence of C-CF species in the films from C2H2F4 and CH2F2, whereas CF2 species dominate the films from CHC1F2. The CFx species distributions for the films are largely controlled by the competition between CF2-producing and HF elimination reactions in the pulsed plasmas. Dominance by HF elimination produces films with high C-CF and CF concentrations (e.g., CH2F2), whereas dominance by CF2-producing reactions leads to films with higher CF2 concentrations (e.g., CHCIF2). The % CF3 in the film is lowest for the precursor having the lowest F:H ratio, CH2F2. Little or no hydrogen was detected in the deposited films. Thermal degradation of films from C2H2F4 and CH2F2, as probed by solid-state nuclear magnetic resonance (NMR) spectroscopy, shows a loss through CF3 detachment and HF elimination. Pulsed plasma films from all three precursors gave dielectric constants of 2.4, with loss tangents on the order of 10−2. Dielectric measurements of pulsed plasma films from hexafluoropropylene oxide (HFPO) gave a dielectric constant of 2.0 ± 0.1 with a loss tangent of 0.009.


Sign in / Sign up

Export Citation Format

Share Document