Ion Implantation Induced Interdiffusion in Quantum Wells for Optoelectronic Device Integration

2001 ◽  
Vol 692 ◽  
Author(s):  
L. Fu ◽  
H. H. Tan ◽  
M. I. Cohen ◽  
C. Jagadish ◽  
L. V. Dao ◽  
...  

AbstractIon implantation induced intermixing of GaAs/AlGaAs and InGaAs/AlGaAs quantum wells was studied using low temperature photoluminescence. Large energy shifts were observed with proton implantation and subsequent rapid thermal annealing. Energy shifts were found to be linear as a function of dose for doses as high as ∼5×1016 cm−2. Proton implantation and subsequent rapid thermal annealing was used to tune the emission wavelength of InGaAs quantum well lasers as well as detection wavelength of GaAs/AlGaAs quantum well infrared photodetectors (QWIPs). Emission wavelength of lasers showed blue shift whereas detection wavelength of QWIPs was red shifted with intermixing.

2000 ◽  
Vol 647 ◽  
Author(s):  
Todd W. Simpson ◽  
Paul G. Piva ◽  
Ian V. Mitchell

AbstractIon implantation followed by rapid thermal annealing is used to induce layer intermixing and thus selectively blue-shift the emission wavelength of InP-based quantum well hetero- structures. The intermixing is greatly enhanced over thermal intermixing due to the supersaturation of defects. The magnitude of the observed blue-shift has been studied previously as a function of ion fluence and ion mass: the dependence on ion mass is well established, with heavier ions producing a larger shift. We show here that chemical effects can also play a significant role in determining the induced blue-shift. Data are presented from the implantation of the similar mass ions; aluminum (m~27), silicon (m~28) and phosphorus (m~31). The P- induced blue shift displays a monotonic increase with fluence, consistent with previous studies; however, the fluence dependence of Al- and Si-induced blue-shifts both deviate significantly from the behaviour for P. These results have important implications for attempts to scale intermixing behaviour with ion mass.


1996 ◽  
Vol 74 (S1) ◽  
pp. 32-34 ◽  
Author(s):  
J. -J. He ◽  
Emil S. Koteles ◽  
M. Davis ◽  
P. J. Poole ◽  
M. Dion ◽  
...  

The properties of band-gap-shifted InGaAsP/InP quantum-well waveguides were investigated. A 90 nm blue-shift of the band gap was obtained by phosphorus ion implantation followed by rapid thermal annealing. It was shown that the absorption constant at the original band edge was reduced from 110 to only 4 cm−1. No waveguide excess loss was observed due to the QW-intermixing process. Good electrical properties of the pin diode were also maintained.


1998 ◽  
Vol 525 ◽  
Author(s):  
D. K. Sengupta ◽  
S. Kim ◽  
H. C. Kuo ◽  
A. P. Curtis ◽  
K. C. Hsieh ◽  
...  

ABSTRACTWe demonstrate that SiO2 cap rapid thermal annealing in ultra-thin p-type InGaAs/InP quantum wells can be used to produce large blue shifts of the band edge. A substantial bandgap blue shift, as much as 292.5 meV at 900°C has been measured and the value of the bandgap shift can be controlled by the anneal time. Theoretical modeling of the intermixing effect on the energy levels is performed based on the effective bond-orbital method, and we obtain a very good fit to the photoluminescence data. Compared to the as-grown detector, the peak spectral response of the annealed detector was shifted to longer wavelength without any major degradation in the responsivity characteristics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dengkui Wang ◽  
Xian Gao ◽  
Jilong Tang ◽  
Xuan Fang ◽  
Dan Fang ◽  
...  

AbstractRapid thermal annealing is an effective way to improve the optical properties of semiconductor materials and devices. In this paper, the emission characteristics of GaAs0.92Sb0.08/Al0.3Ga0.7As multiple quantum wells, which investigated by temperature-dependent photoluminescence, are adjusted through strain and interfacial diffusion via rapid thermal annealing. The light-hole (LH) exciton emission and the heavy-hole (HH) exciton emission are observed at room temperature. After annealing, the LH and HH emission peaks have blue shift. It can be ascribed to the variation of interfacial strain at low annealing temperature and the interfacial diffusion between barrier layer and well layer at high annealing temperature. This work is of great significance for emission adjustment of strained multiple quantum wells.


1988 ◽  
Vol 144 ◽  
Author(s):  
B. Elman ◽  
Emil S. Koteles ◽  
P. Melman ◽  
C. A. Armiento

ABSTRACTLow energy ion implantation followed by rapid thermal annealing (RTA) was utilized to modify exciton transition energies of MBE- rown GaAs/AlGaAs quantum wells (QW). The samples were irradiated with an 75As ion beam with an energy low enough that the depth of the disordered region was spatially separated from the QWs. After RTA, exciton energies (determined using optical spectroscopy) showed large increases which were dependent on QW widths and the implantation fluence with no significant increases in peak linewidths. These energy shifts were interpreted as resulting from the modification of the shapes of the as-grown QWs from square (abrupt interfaces) to rounded due to enhanced Ga and Al interdiffusion in irradiated areas. These results are similar to our data on the RTA of the same structures capped with SiO2 and are consistent with the model of enhanced intermixing of Al and Ga atoms due to diffusion of vacancies generated near the surface.


1989 ◽  
Vol 66 (5) ◽  
pp. 2104-2107 ◽  
Author(s):  
B. Elman ◽  
Emil S. Koteles ◽  
P. Melman ◽  
C. A. Armiento

1994 ◽  
Vol 23 (1) ◽  
pp. 1-6 ◽  
Author(s):  
K. Xie ◽  
C. R. Wie ◽  
J. A. Varriano ◽  
G. W. Wicks

2000 ◽  
Vol 639 ◽  
Author(s):  
Laurent Grenouillet ◽  
Catherine Bru-Chevallier ◽  
Gérard Guillot ◽  
Philippe Gilet ◽  
Philippe Ballet ◽  
...  

ABSTRACTWe report on the effect of thermal annealing on the photoluminescence properties of a Ga0.65In0.35N0.02As0.98/GaAs single quantum well. Thermal annealing is shown to decrease the strong nitrogen-induced localization effects observed at low temperatures and to reduce the full width at half maximum of the emission peak. It also induces a strong blue shift of the emission peak energy, which is thought not to arise from an In-Ga interdiffusion alone, as it is much larger than in a nitrogen-free reference single quantum well.


Sign in / Sign up

Export Citation Format

Share Document