Quantum Dot Long-Wavelength Detectors

2001 ◽  
Vol 692 ◽  
Author(s):  
Pallab Bhattacharya ◽  
Adrienne D. Stiff-Roberts ◽  
Sanjay Krishna ◽  
Steve Kennerly

AbstractLong-wavelength infrared detectors operating at elevated temperatures are critical for imaging applications. InAs/GaAs quantum dots are an important material for the design and fabrication of high-temperature infrared photodetectors. Quantum dot infrared photodetectors allow normal-incidence operation, in addition to low dark currents and multispectral response. The long intersubband relaxation time of electrons in quantum dots improves the responsivity of the detectors, contributing to better hightemperature performance. We have obtained extremely low dark currents (Idark = 1.7 pA, T = 100 K, Vbias = 0.1 V), high detectivities (D* = 2.9×108cmHz1/2/W, T = 100 K, Vbias = 0.2 V), and high operating temperatures (T = 150 K) for these quantum-dot detectors. These results, as well as infrared imaging with QDIPs, will be described and discussed.

2009 ◽  
Vol 21 (18) ◽  
pp. 1332-1334 ◽  
Author(s):  
Wei-Hsun Lin ◽  
Chi-Che Tseng ◽  
Kuang-Ping Chao ◽  
Shu-Cheng Mai ◽  
Shih-Yen Lin ◽  
...  

2008 ◽  
Vol 20 (14) ◽  
pp. 1240-1242 ◽  
Author(s):  
Chi-Che Tseng ◽  
Shu-Ting Chou ◽  
Yi-Hao Chen ◽  
Cheng-Nan Chen ◽  
Wei-Hsun Lin ◽  
...  

2019 ◽  
Vol 7 (46) ◽  
pp. 14441-14453 ◽  
Author(s):  
Aobo Ren ◽  
Liming Yuan ◽  
Hao Xu ◽  
Jiang Wu ◽  
Zhiming Wang

Heterogeneous integration of III–V quantum dots on Si substrates for infrared photodetection is reviewed, focusing on direct epitaxial growth and bonding techniques over the last few years.


2003 ◽  
Vol 776 ◽  
Author(s):  
M. L. Hussein ◽  
W. Q. Ma ◽  
G.J. Salamo

AbstractMultiple layers of self assembled In0.3Ga0.7As quantum dots of different size were grown on GaAs (100) using molecular beam epitaxy. Fourier-transform infrared spectroscopy shows absorption in the long-wavelength infrared region (8–10 νm) under normal incidence. The absorbance peak shift with dot size was investigated and revealed non-monotonic behavior of intersubband transitions. The optical absorption coefficient was calculated to be in order of 3.8×103 cm-2.


2012 ◽  
Vol 101 (24) ◽  
pp. 241114 ◽  
Author(s):  
Jiayi Shao ◽  
Thomas E. Vandervelde ◽  
Ajit Barve ◽  
Andreas Stintz ◽  
Sanjay Krishna

Sign in / Sign up

Export Citation Format

Share Document