Measurement of Mechanical Properties of Single and Multilayered Nitride thin Films Prepared by Cathodic Arc Deposition

2001 ◽  
Vol 697 ◽  
Author(s):  
A.K. Sikder ◽  
I. M. Irfan ◽  
Ashok Kumar ◽  
Robert Durvin ◽  
Mark McDonough ◽  
...  

Mechanical properties of thin films differ significantly from those of bulk materials due to the effects of interfaces, microstructure and thick underlying substrates. In this study we will present the results of nanoindentation tests to evaluate mechanical properties of nitride (TiN, ZrN, CrN, TiCN and TiAlN) thin films. Films were coated on steel substrates using cathodic arc deposition technique. Surface morphology and roughness of the samples are investigated using atomic force microscopy (AFM). Films were also characterized by x-ray diffraction (XRD) technique. Nanoindentation technique along with AFM and XRD methods are very useful for characterizing hard thin coatings.

2016 ◽  
Vol 258 ◽  
pp. 358-361 ◽  
Author(s):  
Yuliya V. Chudinova ◽  
Denis V. Kurek ◽  
Valery P. Varlamov

Natural biodegradable and biocompatible polysaccharides chitosan, pectin, carrageenan and heparin were used to form thin nanostructured films. In this study using atomic force microscopy (AFM) and force spectroscopy the special characteristics of formation and structure of thin coatings were investigated, three models of the polymers interaction were proposed. Different mechanisms of polymers influence on each other in the bilayers formation were shown, coatings with different surface structure and mechanical properties were formed. The obtained data can be used for the preparation of nanostructured coatings with desired surface parameters.


2003 ◽  
Vol 806 ◽  
Author(s):  
Senthil N Sambandam ◽  
Shekhar Bhansali ◽  
Venkat R. Bhethanabotla

ABSTRACTMicrostructures of multi-component amorphous metallic glass alloys are becoming increasingly important due to their excellent mechanical properties and low coefficient of friction. In this work, thin films of Zr-Ti-Cu-Ni-Be have been deposited by DC magnetron sputtering in view of exploring their potential technological applications in fields such as Micro Electro Mechanical Systems (MEMS). Their structure, composition, surface morphology, mechanical properties viz., hardness and Young's modulus were analyzed using X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Nanoindentation. Influence of the deposition parameters of sputtering pressure and power upon the composition and surface morphology of these films has been evidenced by SEM, and AFM analysis, showing that such a process yields very smooth films with target composition at low sputtering pressures. These studies are useful in understanding the multicomponent sputtering process.


2012 ◽  
Vol 60 (19) ◽  
pp. 6494-6507 ◽  
Author(s):  
A. Khatibi ◽  
J. Sjölen ◽  
G. Greczynski ◽  
J. Jensen ◽  
P. Eklund ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 720
Author(s):  
Chun Guo ◽  
Mingdong Kong

Optical and mechanical properties of multilayer coatings depend on the selected layer materials and the deposition technology; therefore, knowledge of the performances of thin films is essential. In the present work, titanium dioxide (TiO2) and silicon dioxide (SiO2) thin films have been prepared by plasma ion-assisted deposition (PIAD). The optical, structural, and mechanical properties of thin films have been investigated using spectrometer/ellipsometer, X-ray diffraction (XRD), atomic force microscopy (AFM), and laser interferometer. The results show that TiO2 film fabricated by PIAD induces a high refractive index, wide optical band gap, amorphous structure, smooth surface, and tensile stress. In the case of SiO2 film, high bias voltage leads to dense structure and compressive stress. As an application, a three-wavelength high reflectance at 632.8, 808, and 1550 nm was optimized and deposited. The dependence of total stress in the multilayer on the substrate temperature was studied as well. In conclusion, it was demonstrated that PIAD is an effective method for the preparation of ultralow stress TiO2/SiO2 multilayer films. The achieved stress was as low as 1.4 MPa. The result could provide guidance to the stress optimization of most optical components without prefiguring, backside coating, and postdeposition treatments.


2002 ◽  
Vol 750 ◽  
Author(s):  
Pallavi Shukla ◽  
A. K. Sikder ◽  
Ashok Kumar ◽  
Robert Durvin ◽  
Mark McDonough ◽  
...  

ABSTRACTMechanical and tribological properties of thin films draw special attention and differ from those of bulk materials due to the effects of interfaces, microstructure and thick underlying substrates. In this study hard wear resistant nitride coatings (TiN, ZrN, TiAlN, TiCN and CrN) were coated on high speed steel substrates using cathodic arc deposition method. Mechanical properties of the films were evaluated using nanoindentation technique. Continuous stiffness method was employed to evaluate the depth sensing hardness and modulus values. Studies of tribological properties were performed using ball-on-disk friction and wear test. We have also investigated the wear track using optical microscopy. Variation of coefficient of friction with time has been analyzed and coating endpoint was estimated. Nanoindentation evaluation of mechanical properties along with the measurement of tribological properties is very useful in order to use them as wear resistant hard coatings.


2010 ◽  
Vol 159 ◽  
pp. 113-116 ◽  
Author(s):  
Roumen Kakanakov ◽  
H. Bahchedjiev ◽  
Lilyana Kolaklieva ◽  
T. Cholakova ◽  
Svetla Evtimova ◽  
...  

Zirconium nitrides (ZrN) coatings have shown better quality in comparison to titanium nitrides (TiN) ones regarding the application in the mechanical processing of aluminum and titanium alloys. This work presents the results from investigation on properties of ZrN-based coatings intended for industrial application. The ZrN and ZrTiN hard coatings in a thickness of (3 5) m were obtained on stainless steel substrates by cathodic arc evaporation method. The coating hardness in the range of 25-32 GPa was evaluated using the Vickers measurement technique. The coating properties were studied in relation to the surface morphology by Atomic force microscopy (AFM) and Scanning electron microscopy (SEM). The analyses showed that the number and size of the macroparticles decrease when N2 pressure increases in the deposition chamber. X-ray diffraction analysis (XRD) was performed to identify the crystallographic structure, preferred orientation and stress of the ZrN coatings.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2012 ◽  
Vol 1424 ◽  
Author(s):  
M. A. Mamun ◽  
A. H. Farha ◽  
Y. Ufuktepe ◽  
H. E. Elsayed-Ali ◽  
A. A. Elmustafa

ABSTRACTNanomechanical and structural properties of pulsed laser deposited niobium nitride thin films were investigated using X-ray diffraction, atomic force microscopy, and nanoindentation. NbN film reveals cubic δ-NbN structure with the corresponding diffraction peaks from the (111), (200), and (220) planes. The NbN thin films depict highly granular structure, with a wide range of grain sizes that range from 15-40 nm with an average surface roughness of 6 nm. The average modulus of the film is 420±60 GPa, whereas for the substrate the average modulus is 180 GPa, which is considered higher than the average modulus for Si reported in the literature due to pile-up. The hardness of the film increases from an average of 12 GPa for deep indents (Si substrate) measured using XP CSM and load control (LC) modes to an average of 25 GPa measured using the DCM II head in CSM and LC modules. The average hardness of the Si substrate is 12 GPa.


Sign in / Sign up

Export Citation Format

Share Document