Sol-Gel Processing of Low Dielectric Constant Nanoporous Silica Thin Films

2001 ◽  
Vol 703 ◽  
Author(s):  
Deok-Yang Kim ◽  
Henry Du ◽  
Suhas Bhandarkar ◽  
David W. Johnson

ABSTRACTTetramethyl ammonium silicate (TMAS) is known as a structuring agent in zeolite synthesis. We report its first use to prepare porous silica films for low k dielectric applications in microelectronics. A solution of TMAS 18.7 wt. % was spin coated on silicon substrates with a 3000 Å thick thermal oxide. The spin coated films were subsequently heat-treated at 450°C to obtain porous silica. The use of TMAS solution without gelation led to films of only moderate porosity value of 10%. The addition of methyl lactate, a gelling agent, significantly increased film porosity and improved the pore size distribution. For example, 50% porosity and uniform pore size distribution (average pore size ∼ 40 Å) has been achieved. Dielectric constants (k) of our porous films are as low as 2.5.

2000 ◽  
Vol 612 ◽  
Author(s):  
D. W. Gidley ◽  
W. E. Frieze ◽  
T. L. Dull ◽  
J. N. Sun ◽  
A. F. Yee

AbstractDepth profiled positronium annihilation lifetime spectroscopy (PALS) has been used to probe the pore characteristics (size, distribution, and interconnectivity) in thin, porous films, including silica and organic-based films. The technique is sensitive to all pores (both interconnected and closed) in the size range from 0.3 nm to 300 nm, even in films buried under a diffusion barrier. PALS may be particularly useful in deducing the pore-size distribution in closed-pore systems where gas absorption methods are not available. In this technique a focussed beam of several keV positrons forms positronium (Ps, the electron-positron bound state) with a depth distribution that depends on the selected positron beam energy. Ps inherently localizes in the pores where its natural (vacuum) annihilation lifetime of 142 ns is reduced by collisions with the pore surfaces. The collisionally reduced Ps lifetime is correlated with pore size and is the key feature in transforming a Ps lifetime distribution into a pore size distribution. In thin silica films that have been made porous by a variety of methods the pores are found to be interconnected and an average pore size is determined. In a mesoporous methyl-silsesquioxane film with nominally closed pores a pore size distribution has been determined. The sensitivity of PALS to metal overlayer interdiffusion is demonstrated. PALS is a non-destructive, depth profiling technique with the only requirement that positrons can be implanted into the porous film where Ps can form.


1992 ◽  
Vol 290 ◽  
Author(s):  
J.-P. Korb ◽  
A. Delville ◽  
Shu Xu ◽  
J. Jonas

AbstractThis work shows how the geometrical confinements enhances the nuclear relaxation of a non wetting liquid in a model porous systems. Application of the proposed theory is made to interpret the size and frequency dependences of the 1H relaxation of methylcyclohexane liquid in sol-gel porous silica glasses with narrow pore-size distribution.


Author(s):  
Helen M. Kerch ◽  
Rosario Gerhardt

The pore size distribution of an unsintered colloidal gel has been determined by stereological analysis of ultramicrotomed thin sections (70 nm) of the gel. This is a novel use of the ultramicrotomy technique as the epoxy represents the porous phase of the microstructure rather than just the medium used to maintain a coherent structure during thinning. In order to obtain statistically significant pore size information a nested sampling scheme was carried out, and a total of 36 two-dimensional fields taken at 19,000 X were examined. Pore diameters were measured with a digital image analyzer which measured 15 projected diameters every 12° from the center of the feature. Stereological quantities obtained were average pore diameter (Davg), number of pores per unit area (NA), and number of pores per unit volume (NV).


2011 ◽  
Vol 316-317 ◽  
pp. 155-169
Author(s):  
Mohammad Ebrahim Zeynali

The mathematical model for multicomponent diffusion in styrene production is given considering all six reactions involved in styrene production. The diffusion coefficients for catalyst pellet are calculated for unimodal and bimodal pore size distributions using trapezoidal rule of integration. The effects of standard deviation and average pore size on the diffusion coefficient are determined. The differential equations are converted to algebraic equations and solved by the orthogonal collocation method. The effectiveness factor of catalyst pellet in styrene production is calculated for various pore sizes. It is seen that the average pore size and pore size distribution affects the production rate and effectiveness factor significantly.


2000 ◽  
Vol 612 ◽  
Author(s):  
Sylvie Acosta ◽  
André Ayral ◽  
Christian Guizard ◽  
Charles Lecornec ◽  
Gérard Passemard ◽  
...  

AbstractPorous silica exhibits attractive dielectric properties, which make it a potential candidate for use as insulator into interconnect structures. A new way of preparation of highly porous silica layers by the sol-gel route was investigated and is presented. The synthesis strategy was based on the use of common and low toxicity reagents and on the development of a simple process without gaseous ammonia post-treatment or supercritical drying step. Defect free layers were deposited by spin coating on 200 mm silicon wafers and characterized. Thin layers with a total porosity larger than 70% and an average pore size of 5 nm were produced. The dielectric constant measured under nitrogen flow on these highly porous layers is equal to ∼ 2.5, which can be compared to the value calculated from the measured porosity, ∼ 1.9. This difference is explained by the presence of water adsorbed on the hydrophilic surface of the unmodified silica.


2000 ◽  
Vol 612 ◽  
Author(s):  
M.R. Baklanov ◽  
K.P. Mogilnikov

AbstractEllipsometric porosimetry (EP) is a simple and effective method for the characterization of the porosity (volume of both open and close pores), average pore size, specific surface area and pore size distribution (PSD) in thin porous films deposited on top of any smooth solid substrat e. Because a laser probe is used, small surface area can be analyzed. Therefore, EP can be used on patterned wafers and it is compatible with microelectronic technology. This method is a new version of adsorption (BET) porosimetry. In situ ellipsometry is used to determine the amount of adsorptive which adsorbed/condensed in the film. Change in refractive index is used to calculate of the quantity of adsorptive present in the film. EP also allows the study of thermal stability, adsorption and swelling properties of low-K dielectric films. Room temperature EP based on the adsorption of vapor of some suitable organic solvents and method of calculation of porosity and PSD is discussed. Examination of the validity of Gurvitsch rule for various organic adsorptives (toluene, heptane, carbon tetrachloride and isopropyl alcohol) has been carried out to assess the reliability of measurements of pore size distribution by the ellipsometric porosimetry.


Sign in / Sign up

Export Citation Format

Share Document