Correlation of Light-induced Enhancement of Open-Circuit Voltage and Structural Change of Heterogeneous Silicon Solar Cells

2002 ◽  
Vol 715 ◽  
Author(s):  
Jeffrey Yang ◽  
Kenneth Lord ◽  
Baojie Yan ◽  
Arindam Banerjee ◽  
Subhendu Guha ◽  
...  

AbstractWe observe a significant light-induced increase in the open-circuit voltage, Voc, of thin-film silicon solar cells whose intrinsic (i) layer consists of an amorphous and microcrystalline mixed phase. The increase depends on the i-layer thickness, the i-layer deposition temperature, the initial Voc values, and the light-soaking intensity. An increase of as large as 150 mV is observed. The original Voc is restored after subsequent thermal annealing. In-situ photoluminescence (PL) spectroscopy is used to investigate this metastable phenomenon. We find that the PL intensity and peak-energy position associated with the amorphous component of the heterogeneous material increase upon light soaking, suggesting a structural change. We propose that a reduction of microcrystalline volume fraction or size is responsible for the Voc enhancement.

2011 ◽  
Vol 181-182 ◽  
pp. 328-331
Author(s):  
Ming Ji Shi ◽  
Lei Xiong ◽  
Lan Li Chen

It is necessary to improve the open circuit voltage of amorphous silicon solar cells for its applications. In this paper, we discuss the effects of hydrogen plasma treatment on the P layer and the performance of the amorphous silicon solar cells. The result shows that the open circuit voltage increased by 0.0257V, the fill factor increased by 0.039 and the energy conversion efficiency increased by 9%. The highest VOCwe got was 0.99V. Treating P layer with hydrogen plasma has been demonstrated to result in materials with improved crystalline volume fraction which was very effective to increase the light absorption of the intrinsic layer. What is more, it could be easily integrated into the amorphous silicon solar cell mass production process.


2001 ◽  
Vol 664 ◽  
Author(s):  
Guozhen Yue ◽  
Jessica M. Owens ◽  
Jennifer Weinberg-Wolf ◽  
Daxing Han ◽  
Jeffrey Yang ◽  
...  

ABSTRACTa-Si:H films and their n-i-p solar cells were prepared using plasma-enhanced CVD. The samples were prepared with no-, low-, standard, and high-H dilution. Raman and photoluminescence (PL) were used to characterize the i-layer. The main results are (a) Raman shows typical a-Si:H mode except for a c-Si peak in the 450 nm-thick film with high-H dilution, and (b) PL shows two regimes. (I) Below the onset of microcrystallinity characterized by x-ray diffraction, a blue-shift of the 1.4 eV PL peak energy and a decrease of the band width occur. (II) Above the onset of microcrystallinity, the PL efficiency decreases by a factor of 4-5, and the PL peak energy is red-shifted toward 1.2 eV as the μc-Si volume fraction is increased. In addition, the solar cell open circuit voltage shows first an increase and then a decrease, correlating with the PL peak energy position. We conclude that the PL spectroscopy is a sensitive tool for characterizing the gradual amorphous-to-microcrystalline structural transition in thin film solar cells.


2015 ◽  
Vol 5 (6) ◽  
pp. 1757-1761 ◽  
Author(s):  
Daniel Amkreutz ◽  
William D. Barker ◽  
Sven Kuhnapfel ◽  
Paul Sonntag ◽  
Onno Gabriel ◽  
...  

2015 ◽  
Vol 212 (4) ◽  
pp. 840-845 ◽  
Author(s):  
Simon Hänni ◽  
Mathieu Boccard ◽  
Grégory Bugnon ◽  
Matthieu Despeisse ◽  
Jan-Willem Schüttauf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document