Defect Accumulation and Recovery in Ion-Implanted 6H-SiC

2002 ◽  
Vol 719 ◽  
Author(s):  
W. Jiang ◽  
W. J. Weber ◽  
C. M. Wangxya

AbstractSingle crystal wafers of <0001>-oriented 6H-SiC were irradiated at different temperatures using a variety of ion species. The disorder on both the Si and C sublattices has been studied in situ using a combination of ion beam analyses in multiaxial channeling geometry. The fraction of the irradiation-induced defects surviving simultaneous recovery processes decreases with decreasing ion mass and with increasing irradiation temperature. Some of the Si and C defects are well aligned with the <0001> axis and the rate of C disordering is higher than that of Si disordering. Three recovery stages in Au2+-irradiated 6H-SiC have been identified.

2013 ◽  
Vol 437 (1-3) ◽  
pp. 240-249 ◽  
Author(s):  
Di Yun ◽  
Marquis A. Kirk ◽  
Peter M. Baldo ◽  
Jeffrey Rest ◽  
Abdellatif M. Yacout ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 758-759
Author(s):  
W.L. Zhou ◽  
Y. Sasaki ◽  
Y. Ikuhara ◽  
C.J.O’Connor

Artificial defects generated by ion irradiation have been considered an efficient method to enhance the critical current density in superconducting materials. The mechanism of producing defects as flux pining centers is still an important issue since the efficiency of irradiation-induced defects in flux pinning strongly depends on their microstructures. Different types of defects have been found in heavy ion irradiation. However, there are few results that show light ion irradiation due to the target material selected, the type of light ion and energy, and the incident ion angle. Another factor is the difficulty of cross-sectional sample preparation. In this paper, a single crystal Bi2Sr2CaCu2O7-x with 11 MeV B5+ ion irradiation was observed by transmission electron microscope (TEM) from both plan and cross-sectional view.The Bi2Sr2CaCu2O7-x single crystals used for ion irradiation were prepared using the floating-zone melting method. The crystals were cleaved into thin sheets of about 20 μm thickness along the a-b plane and cut to about 2mmx2mm size.


2002 ◽  
Vol 744 ◽  
Author(s):  
S. O. Kucheyev ◽  
C. Jagadish ◽  
J. S. Williams ◽  
P. N. K. Deenapanray ◽  
Mitsuaki Yano ◽  
...  

ABSTRACTThe formation of highly resistive films of single-crystal ZnO as a result of irradiation with MeV Li, O, and Si ions is demonstrated. Results show that the ion doses necessary for electrical isolation close-to-inversely depend on the number of ion-beam-generated atomic displacements. Results show that an increase in the dose of 2 MeV O ions (up to ∼ 2 orders of magnitude above the threshold isolation dose) and irradiation temperature (up to 350 °C) has a relatively minor effect on the thermal stability of electrical isolation, which is limited to temperatures of ∼ 300 — 400 °C. For the case of multiple-energy implantation with keV Cr, Fe, or Ni ions, the evolution of sheet resistance with annealing temperature is consistent with defect-induced isolation, with a relatively minor effect of Cr, Fe, or Ni impurities on the thermal stability of isolation. Based on these results, the mechanism for electrical isolation in ZnO by ion bombardment is discussed.


2009 ◽  
Vol 1215 ◽  
Author(s):  
Valeriy Borysenko ◽  
Yuri Petrusenko ◽  
Dmitro Barankov

AbstractStudies were made into the influence of oversized rare-earth atoms on the processes of radiation defect accumulation and annealing in two-component zirconium alloys. Zr and Zr-X alloys (where X = Sc, Dy, Y, Gd and La) have been irradiated with 2 MeV electrons at 82 K. The radiation-induced resistivity has been measured in situ as a function of dose. As compared to unalloyed zirconium, the alloys have exhibited a decrease in the resistivity gain, this decrease being proportional to both the concentration and the size of dopant atoms. A possible explanation for the effect is offered. The difference between the recovery processes in zirconium and in its alloys has been studied. To this end, the irradiated specimens were subjected to isochronal annealing at temperatures between 82 and 350 K. It is shown that Dy, Y, Gd and La atoms trap interstitial atoms at stage I of the recovery. The dissociation of interstitial-impurity complexes takes place at stage II. In zirconium alloys with Dy, Y and Gd, splitting of recovery stage III into two substages has been revealed. The Zr-La alloy has not shown this splitting. Isothermal annealing data were used to determine the activation energies of recovery stages, and also to calculate the activation energy spectra for zirconium and its alloys. The oversized atoms of rare-earth metals are shown to interact effectively with both the interstitials and the vacancies in the zirconium matrix. This effect must be taken into account when developing new radiation-resistant Zr-base alloys or modifying the ones already existing.


2013 ◽  
Vol 439 (1-3) ◽  
pp. 185-191 ◽  
Author(s):  
N. Li ◽  
K. Hattar ◽  
A. Misra

1993 ◽  
Vol 321 ◽  
Author(s):  
L. M. Wang ◽  
W. L. Gong ◽  
R. C. Ewing

ABSTRACTThe temperature dependence of the critical amorphization dose, Dc, of four A2BO4 compositions, forsterite (Mg2SiO4), fayalite (Fe2SiO4), synthetic Mg2GeO4, and phenakite (Be2SiO4) was investigated by in situ TEM during 1.5 MeV Kr+ion beam irradiation at temperatures between 15 to 700 K. For the Mg- and Fe-compositions, the A-site is in octahedral coordination, and the structure is a derivative hep (Pbnm); for the Be-composition, the A- and B-sites are in tetrahedral coordination, forming corner-sharing hexagonal rings (R3). Although the Dc's were quite close at 15 K for all the four compositions (0.2–0.5 dpa), Dc increased with increasing irradiation temperature at different rates. The Dc-temperature curve is the result of competition between amorphization and dynamic recovery processes. The Dc rate of increase (highest to lowest) is: Be2SiO4, Mg2SiO4, Mg2GeO4, Fe2SiO4. At room temperature, Be2SiO4 amorphized at 1.55 dpa; Fe2SiO4, at only 0.22 dpa. Based on the Dc-temperature curves, the activation energy, Ea, of the dynamic recovery process and the critical temperature, Tc, above which complete amorphization does not occur are: 0.029, 0.047, 0.055 and 0.079 eV and 390, 550, 650 and 995 K for Be2SiO4, Mg2SiO4, Mg2GeO4 and Fe2SiO4, respectively. These results are explained in terms of the materials properties (e.g., bonding and thermodynamic stability) and cascade size which is a function of the density of the phases. Finally, we note the importance of increased amorphization cross-section, as a function of temperature (e.g., the low rate of increase of Dc with temperature for Fe2SiO4).


2019 ◽  
Vol 48 (6) ◽  
pp. 3849-3853
Author(s):  
S. M. Tunhuma ◽  
F. D. Auret ◽  
H. T. Danga ◽  
J. M. Nel ◽  
M. M. Diale

2011 ◽  
Vol 17 (S2) ◽  
pp. 444-445
Author(s):  
C Barr ◽  
G Vetterick ◽  
K Hattar ◽  
M Kirk ◽  
A Misra ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


Sign in / Sign up

Export Citation Format

Share Document