Recent Developments in Simulating Grain Growth with Monte Carlo Algorithms

2002 ◽  
Vol 731 ◽  
Author(s):  
Qiang Yu ◽  
Sven K. Esche

AbstractBoth isotropic and anisotropic single-phase grain growth processes modeled using a modified Monte Carlo method exhibit parabolic growth kinetics, and the anisotropy degree affects only the rate of change of the mean grain area. In some cases, with significantly anisotropic grain boundary energies, the normalized grain size distributions are not time-invariant during the lattice evolution.

2010 ◽  
Vol 150-151 ◽  
pp. 1358-1363
Author(s):  
Bin Fang ◽  
Chuan Zhen Huang ◽  
Chong Hai Xu ◽  
Sheng Sun

The fabrication is a key process for the preparation of ceramic tool materials, which governs the mechanical properties of ceramic tool materials under the condition of the same compositions. A computer simulation coupled with fabrication temperature for the hot-pressing process of single-phase ceramic tool materials has been developed using a two-dimensional hexagon lattice model mapped from the realistic microstructure without considering the presence of pores. The fabrication of single-phase Al2O3 is simulated. The mean grain size of simulated microstructure by Monte Carlo Potts model integrated with fabrication temperature increases with an increase in fabrication temperature, which is consistent with the experiment results.


2012 ◽  
Vol 499 ◽  
pp. 150-155 ◽  
Author(s):  
Bin Fang ◽  
Chuan Zhen Huang ◽  
Chong Hai Xu ◽  
Sheng Sun

The relationship between fabrication pressure and microstructure evolution is proposed. A computer simulation coupled with fabrication pressure for the hot-pressing process of single-phase ceramic tool materials has been developed, which uses a two-dimensional hexagon lattice model mapped from the realistic microstructure without considering the presence of pores. The fabrication of single-phase Al2O3 is simulated. The mean grain size of simulated microstructure by Monte Carlo Potts model integrated with fabrication pressure increases with an increase in fabrication pressure, which is consistent with the experiment results. It is shown that Monte Carlo Potts model coupled with fabrication pressure may simulate the microstructure evolution of single-phase ceramic tool materials.


2007 ◽  
Vol 558-559 ◽  
pp. 1219-1224 ◽  
Author(s):  
Dana Zöllner ◽  
Peter Streitenberger

An improved Monte Carlo (MC) Potts model algorithm has been implemented allowing an extensive simulation of three-dimensional (3D) normal grain growth. It is shown that the simulated microstructure reaches a quasi-stationary state, where the growth of grains can be described by an average self-similar volumetric rate of change, which depends only on the relative grain size. Based on a quadratic approximation of the volumetric rate of change a generalized analytic mean-field theory yields a scaled grain size distribution function that is in excellent agreement with the simulation results.


2021 ◽  
Vol 31 (2) ◽  
Author(s):  
Ömer Deniz Akyildiz ◽  
Joaquín Míguez

AbstractAdaptive importance samplers are adaptive Monte Carlo algorithms to estimate expectations with respect to some target distribution which adapt themselves to obtain better estimators over a sequence of iterations. Although it is straightforward to show that they have the same $$\mathcal {O}(1/\sqrt{N})$$ O ( 1 / N ) convergence rate as standard importance samplers, where N is the number of Monte Carlo samples, the behaviour of adaptive importance samplers over the number of iterations has been left relatively unexplored. In this work, we investigate an adaptation strategy based on convex optimisation which leads to a class of adaptive importance samplers termed optimised adaptive importance samplers (OAIS). These samplers rely on the iterative minimisation of the $$\chi ^2$$ χ 2 -divergence between an exponential family proposal and the target. The analysed algorithms are closely related to the class of adaptive importance samplers which minimise the variance of the weight function. We first prove non-asymptotic error bounds for the mean squared errors (MSEs) of these algorithms, which explicitly depend on the number of iterations and the number of samples together. The non-asymptotic bounds derived in this paper imply that when the target belongs to the exponential family, the $$L_2$$ L 2 errors of the optimised samplers converge to the optimal rate of $$\mathcal {O}(1/\sqrt{N})$$ O ( 1 / N ) and the rate of convergence in the number of iterations are explicitly provided. When the target does not belong to the exponential family, the rate of convergence is the same but the asymptotic $$L_2$$ L 2 error increases by a factor $$\sqrt{\rho ^\star } > 1$$ ρ ⋆ > 1 , where $$\rho ^\star - 1$$ ρ ⋆ - 1 is the minimum $$\chi ^2$$ χ 2 -divergence between the target and an exponential family proposal.


2013 ◽  
Vol 71 ◽  
pp. 25-32 ◽  
Author(s):  
J.B. Allen ◽  
C.F. Cornwell ◽  
B.D. Devine ◽  
C.R. Welch

Author(s):  
J. B. Allen ◽  
C. F. Cornwell ◽  
B. D. Devine ◽  
C. R. Welch

The Q-state Monte Carlo, Potts model is used to investigate 2D, anisotropic, grain growth of single-phase materials subject to temperature gradients. Anisotropy is simulated via the use of nonuniform grain boundary surface energies, and thermal gradients are simulated through the use of variable grain boundary mobilities. Hexagonal grain elements are employed, and elliptical Wulff plots are used to assign surface energies to grain lattices. The mobility is set to vary in accordance with solutions to a generalized heat equation and is solved for two separate values of the mobility coefficient. Among other findings, the results reveal that like isotropic grain growth, under the influence of a thermal gradient, anisotropic grain growth also demonstrates locally normal growth kinetics.


2013 ◽  
Vol 395-396 ◽  
pp. 262-265 ◽  
Author(s):  
Hong Mei Cheng ◽  
Chuan Zhen Huang

A Monte Carlo Potts model coupled with sintering pressure for the sintering process of nanocomposite ceramic tool materials is proposed, the relation between grain growth and sintering pressure is presented. The grain growth process at different sintering pressure is investigated in this model, and the effect of sintering pressure on microstructure evolution is discussed, it is found that the mean grain size increases with the increase of sintering pressure during simulation. The results from this simulation are shown to correlate well with the experimental observations.


Sign in / Sign up

Export Citation Format

Share Document