Cantilever Epitaxy of GaN on Sapphire: Further Reductions in Dislocation Density
ABSTRACTThe density of vertical threading dislocations at the surface of GaN grown on sapphire by cantilever epitaxy has been reduced with two new approaches. First, narrow mesas (<1 μm wide) were used and {11–22} facets formed over them early in growth to redirect dislocations from vertical to horizontal. Cross-sectional transmission electron microscopy was used to demonstrate this redirection and to identify optimum growth and processing conditions. Second, a GaN nuc-leation layer with delayed 3D → 2D growth transition and inherently lower threading dislocation density was adapted to cantilever epitaxy. Several techniques show that a dislocation density of only 2–3×107/cm2 was achieved by combining these two approaches. We also suggest other developments of cantilever epitaxy for reducing dislocations in heteroepitaxial systems.