Hydrogenated Microcrystalline Silicon Single-Junction and Multi-Junction Solar Cells

2003 ◽  
Vol 762 ◽  
Author(s):  
Baojie Yan ◽  
Guozhen Yue ◽  
Jeffrey Yang ◽  
Arindam Banerjee ◽  
Subhendu Guha

AbstractThis paper summarizes our recent studies of hydrogenated microcrystalline silicon (μc-Si:H) solar cells as a potential substitute for hydrogenated silicon germanium alloy (a-SiGe:H) bottom cells in multi-junction structures. Conventional radio frequency (RF) glow discharge is used to deposit hydrogenated amorphous silicon (a-Si:H) and μc-Si:H at low rates (∼ 1 Å/s), searching for the highest efficiency. We have achieved an initial active-area efficiency of 13.0% and stable efficiency of 11.2% using an a-Si:H/μc-Si:H double-junction structure. Modified very high frequency (MVHF) glow discharge is used to deposit a-Si:H and μc-Si:H at high rates (∼ 3-10 Å/s) for comparison with our a-Si:H/a-SiGe:H/a-SiGe:H triple-junction production technology. The deposition time for the μc-Si:H intrinsic (i) layer in the bottom cell should be less than 30 minutes in order to be acceptable for mass production. To date, an initial active-area efficiency of 12.3% has been achieved with the bottom cell deposited in 50 minutes. By increasing the deposition rate and reducing the bottom cell thickness, we have achieved an initial active-area efficiency of 11.4% with the bottom cellilayer deposited in 30 minutes. The cell stabilized to 10.4% after prolonged light soaking. We will address issues related to μc-Si:H material, solar cell design, solar cell analysis, and stability.

2004 ◽  
Vol 808 ◽  
Author(s):  
Guozhen Yue ◽  
Baojie Yan ◽  
Jessica M. Owens ◽  
Jeffrey Yang ◽  
Subhendu Guha

ABSTRACTWe have used the modified very-high-frequency glow discharge technique to deposit hydrogenated microcrystalline silicon (m c-Si:H) solar cells at high rates for use as the bottom cell in a multi-junction structure. We have investigated c-Si:H single-junction, a-Si:H/ c-Si:H double-junction, and a-Si:H/a-SiGe:H/m c-Si:H triple-junction solar cells and achieved initial active area efficiencies of 7.7%, 12.5%, and 12.4%, respectively. Issues related to improving material properties and device structures are addressed. By taking advantage of a lower degradation in m c-Si:H than a-Si:H and a-SiGe:H alloys, we have minimized the light induced effect in multi-junction structures by designing a bottom-cell-limited current mismatching. As a result, we have obtained a stable active-area cell efficiency of 11.2% with an a-Si:H/a-SiGe:H/μ c-Si:H triple-junction structure.


2002 ◽  
Vol 715 ◽  
Author(s):  
Baojie Yan ◽  
Kenneth Lord ◽  
Jeffrey Yang ◽  
Subhendu Guha ◽  
Jozef Smeets ◽  
...  

AbstractHydrogenated microcrystalline silicon (μc-Si:H) solar cells are made using modified veryhigh-frequency (MVHF) glow discharge at deposition rates ∼3-5 Å/s. We find that the solar cells made under certain conditions show degradation in air without intentional light soaking. The short-circuit current drops significantly within a few days after deposition, and then stabilizes. We believe that post-deposition oxygen diffusion along the grain boundaries or cracks is the origin of the ambient degradation. By optimizing the deposition conditions, we have found a plasma regime in which the μc-Si:H solar cells do not show such ambient degradation. The best a-Si:H/μc-Si:H double-junction solar cell has an initial active-area efficiency of 10.9% and is stable against the ambient degradation. The stability data of the solar cells after light soaking are also presented.


2004 ◽  
Vol 808 ◽  
Author(s):  
Baojie Yan ◽  
Guozhen Yue ◽  
Jeffrey Yang ◽  
Subhendu Guha ◽  
D. L. Williamson ◽  
...  

ABSTRACTHydrogenated microcrystalline silicon (m c-Si:H) solar cells with different thicknesses were deposited on specular stainless steel substrates and on textured Ag/ZnO back reflectors using RF and modified very high frequency glow discharge at various deposition rates. Raman spectra and X-ray diffraction patterns exhibit a significant increase of microcrystalline volume fraction and in grain size with film thickness. Atomic force microscopy reveals an increase in the size of microstructural features and the surface roughness with increasing thickness. Based on these results, we believe that the increase of the microcrystalline phase with thickness is the main reason for the deterioration of cell performance with the thickness of the intrinsic layer. To overcome this problem, we have developed a procedure of varying the hydrogen dilution ratio during deposition. Using this method, we have been successful in controlling the microstructure evolution and achieved an initial active-area efficiency of 8.4% for a c-Si:H single-junction solar cell, and 13.6% for an a-Si:H/a-SiGe:H/m c-Si:H triple-junction solar cell.


2007 ◽  
Vol 989 ◽  
Author(s):  
Jason Collins ◽  
Nikolas J. Podraza ◽  
Jian Li ◽  
Xinmin Cao ◽  
Xunming Deng ◽  
...  

AbstractPhase diagrams have been established to describe very high frequency (vhf) plasma-enhanced chemical vapor deposition (PECVD) processes for intrinsic hydrogenated silicon (Si:H) and silicon-germanium alloy (Si1-xGex:H) thin films using crystalline Si substrates that have been over-deposited with n-type amorphous Si:H (a-Si:H). The Si:H and Si1-xGex:H processes are applied for the top and middle i-layers of triple-junction a-Si:H-based n-i-p solar cells fabricated at University of Toledo. Identical n/i cell structures were co-deposited on textured Ag/ZnO back-reflectors in order to correlate the phase diagram and the performance of single-junction solar cells, the latter completed through over-deposition of the p-layer and top contact. This study has reaffirmed that the highest efficiencies for a-Si:H and a-Si1-xGex:H solar cells are obtained when the i-layers are prepared under maximal H2 dilution conditions.


2011 ◽  
Vol 1321 ◽  
Author(s):  
Takuya Matsui ◽  
Michio Kondo

ABSTRACTThis paper presents our material studies on hydrogenated microcrystalline silicon (μc-Si:H) and microcrystalline silicon-germanium alloy (μc-Si1-xGex:H) thin films for the development of high efficiency p-i-n junction solar cells. In μc-Si:H solar cells, we have evaluated the structural properties of the intrinsic μc-Si:H layers grown by plasma-enhanced chemical vapor deposition at high deposition rates (>2 nm/s). Several design criteria for the device grade μc-Si:H are proposed in terms of crystallographic orientation, grain size and grain boundary passivation. Meanwhile, in μc-Si1-xGex:H solar cells, we have succeeded in boosting the infrared response of solar cell upon Ge incorporation up to x∼0.2. Nevertheless, a degradation of solar cell parameters is observed for large Ge contents (x>0.2) and thick i-layers (> 1 μm), which is attributed to the influence of the Ge dangling bonds that act as acceptorlike states in undoped μc-Si1-xGex:H. To improve the device performance, we introduce an oxygen doping technique to compensate the native defect acceptors in μc-Si1-xGex:H p-i-n solar cells.


2007 ◽  
Vol 989 ◽  
Author(s):  
Guozhen Yue ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Subhendu Guha

AbstractWe report our recent progress on high rate deposition of hydrogenated amorphous silicon (a-Si:H) and silicon germanium (a-SiGe:H) based n-i-p solar cells. The intrinsic a-Si:H and a-SiGe:H layers were deposited using modified very high frequency (MVHF) glow discharge. We found that both the initial cell performance and stability of the MVHF a-Si:H single-junction cells are independent of the deposition rate up to 15 Å/s. The average initial and stable active-area cell efficiencies of 10.0% and 8.5%, respectively, were obtained for the cells on textured Ag/ZnO coated stainless steel substrates. a-SiGe:H single-junction cells were also optimized at a rate of ~10 Å/s. The cell performance is similar to those made using conventional radio frequency technique at 3 Å/s. By combining the optimized component cells made at 10 Å/s, an a-Si:H/a-SiGe:H double-junction solar cell with an initial active-area efficiency of 11.7% was achieved.


2015 ◽  
Vol 37 ◽  
pp. 434 ◽  
Author(s):  
Razagh Hafezi ◽  
Soroush Karimi ◽  
Sharie Jamalzae ◽  
Masoud Jabbari

“Micromorph” tandem solar cells consisting of a microcrystalline silicon bottom cell and an amorphous silicon top cell are considered as one of the most promising new thin-film silicon solar-cell concepts. Their promise lies in the hope of simultaneously achieving high conversion efficiencies at relatively low manufacturing costs. The concept was introduced by IMT Neuchâtel, based on the VHF-GD (very high frequency glow discharge) deposition method. The key element of the micromorph cell is the hydrogenated microcrystalline silicon bottom cell that opens new perspectives for low-temperature thin-film crystalline silicon technology. This paper describes the use, within p–i–n- and n–i–p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (_c-Si:H) thin films (layers), both deposited at low temperatures (200_C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. Finally, present performances and future perspectives for a high efficiency ‘micromorph’ (mc-Si:Hya-Si:H) tandem solar cells are discussed.


2001 ◽  
Vol 664 ◽  
Author(s):  
Jeffrey Yang ◽  
Baojie Yan ◽  
Jozef Smeets ◽  
Subhendu Guha

ABSTRACTA modified very high frequency (MVHF) glow discharge technique is used to deposit amorphous silicon (a-Si) and amorphous silicon-germanium (a-SiGe) alloy solar cells at high deposition rates. High quality a-Si alloy solar cells have been obtained by using MVHF at deposition rates up to ∼10 Å/s. The cells show good initial and stabilized efficiencies comparable to those obtained from conventional radio-frequency (RF) glow discharge deposition at low rates (∼1 Å/s). However, high quality a-SiGe alloy solar cells are more difficult to achieve at high deposition rates. In this paper, we present the progress made on a-SiGe alloy solar cells by incorporating bandgap profiling and appropriate buffer layers. Using the improved a-SiGe alloy solar cells, a-Si/a-SiGe tandem configurations are made and results presented.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Guozhen Yue ◽  
Laura Sivec ◽  
Baojie Yan ◽  
Jeff Yang ◽  
Subhendu Guha

AbstractWe report recent progress on hydrogenated nanocrystalline silicon (nc-Si:H) solar cells prepared at different deposition rates. The nc-Si:H intrinsic layer was deposited, using a modified very high frequency (MVHF) glow discharge technique, on Ag/ZnO back reflectors (BRs). The nc-Si:H material quality, especially the evolution of the nanocrystallites, was optimized using hydrogen dilution profiling. First, an initial active-area efficiency of 10.2% was achieved in a nc-Si:H single-junction cell deposited at ~5 Å/s. Using the improved nc-Si:H cell, we obtained 14.5% initial and 13.5% stable active-area efficiencies in an a-Si:H/nc-Si:H/nc-Si:H triple-junction structure. Second, we achieved a stabilized total-area efficiency of 12.5% using the same triple-junction structure but with nc-Si:H deposited at ~10 Å/s; the efficiency was measured at the National Renewable Energy Laboratory (NREL). Third, we developed a recipe using a shorter deposition time and obtained initial 13.0% and stable 12.7% active-area efficiencies for the same triple-junction design.


Sign in / Sign up

Export Citation Format

Share Document