Ionic Polymer-Metal Composites as Smart Materials under Subzero Temperature Conditions

2003 ◽  
Vol 785 ◽  
Author(s):  
Jason W. Paquette ◽  
Kwang J. Kim

ABSTRACTThis paper presents a description of Ionic Polymer-Metal Composites (IPMCs) as an attractive solution for cold operation actuators. This is because of their capability for actuation with relatively low voltages (1 to 5 V), durability and capability of operating within the subzero regime T < 0 °C. The building block material of IPMCs experiences phase changes within the base polymeric material that results in an alteration of the performance of the material in terms of actuator performance. An experimental apparatus is constructed in order to have a controlled temperature environment in which to analyze the material. The overall temperature within the reservoir, the temperature on the IPMC surface electrodes, the conductivity of the membrane and the blocking force were all measured. The phase changes inherent at these low temperatures are investigated further by means of Differential Scanning Calorimeter to obtain the phase change temperatures and characteristics. The results are presented and interpreted to show that there is definite promise for these low temperature polymeric actuators to operate in practical applications.

Aerospace ◽  
2003 ◽  
Author(s):  
Jason W. Paquette ◽  
Kwang J. Kim

Actuators that can operate within harsh environments, such as that of cold regions or outer space, could be quite useful. We have found that Ionic Polymer-Metal Composites (IPMCs) provide an attractive solution for cold operation actuators. This is because of their capability for soft actuation with relatively low voltages (1 to 5 V), durability and capability of operating within the subzero regime T &lt; °C. The building block material of IPMCs, which is dependent upon hydration or weak chemical bonding by a solvent (typically water), experiences phase changes within the base material that results in an alteration of the performance of the material in terms of actuator performance. This alteration is to be expected, but the magnitude and degree of deviation from the actuation at normal room temperature are values of interest. An experimental apparatus is consructed in order to have a controlled temperature environment in which to analyze the material. The overall temperature within the reservoir, the temperature on the IPMC surface electrodes, the conductivity of the membrane and the blocking force were all measured and documented. The phase changes inherent at these low temperatures are investigated further by means of Differential Scanning Calorimeter to obtain the phase change temperatures. The electrical conductivity of the material was then used to help explain the phenomena for the overall change in behavior primarily at these phase change temperatures. The results are presented and interpreted to show that there is definite promise for these low temperature polymeric actuators to operate in practical applications. Also, some theoretical consideration is presented.


2020 ◽  
Vol 31 (17) ◽  
pp. 1973-1985
Author(s):  
Hojat Zamyad ◽  
Nadia Naghavi ◽  
Reza Godaz ◽  
Reza Monsefi

The high application potential of ionic polymer–metal composites has made the behavior identification of this group of smart materials an attractive area. So far, several models have been proposed to predict the bending of an ionic polymer–metal composite actuator, but these models have some weaknesses, the most important of them are the use of output data (in autoregressive models), high complexity to achieve a proper precision (in non-autoregressive models), and lack of compatibility with the behavioral nature of the material. In this article, we present a hybrid model of parallel non-autoregressive recurrent networks with internal memory cells to overcome existing weaknesses. The validation results on experimental data show that the proposed model has acceptable accuracy and flexibility. Moreover, simplicity and compatibility with the behavioral nature of the material promote using the proposed model in practical applications.


2018 ◽  
Vol 29 (14) ◽  
pp. 2863-2873 ◽  
Author(s):  
Jakub Bernat ◽  
Jakub Kolota

Ionic polymer–metal composites are classified as a smart materials group, whose properties can be designed depending on the needs that arise. Ionic polymer–metal composites belong to the class of wet electroactive polymers. They are promising candidates actuator for various potential applications mainly due to their flexible, low voltage requirements, compact design, and lack of moving parts. However, being a widely used material in industry, ionic polymer–metal composite requires complex control methods due to its strongly nonlinear nature. An important prerequisite for an intelligent controller is the ability to adapt rapidly to any unknown operating environment. This article presents a novel approach to tuning multiple models of an online identifier by integral mapping. Through the extension of the estimation law of additional mapping between parameters and measurable signals, we significantly improve transient responses without increasing feedback gain. The authors measured the moisture content of ionic polymer–metal composite and consider in the experiment relationship between drying and varying of curvature output. The effectiveness of the proposed multiple models adaptive control strategy was verified in various experiments. The results of the study illustrated in the experiments show that adding new mapping improves not only the transients of controlled plant, but also increases the performance indexes of adaptive system.


Author(s):  
Zhuang Zhi Sun ◽  
Gang Zhao ◽  
Hua Jun Guo ◽  
Hao Jun Wang ◽  
Jue Jie Yang ◽  
...  

This paper presents an overview of various innovative fabrication approaches and the potential applications of ionic polymer metal composites (IPMC), which is a composite material consisting of a polymer membrane sandwiched between two thin electrode layers. When given a voltage within a range of 1-5V, cations inside accompanying with water molecules of IPMC move across the width of the material causing a uniform water distribution and finally to achieve it’s bending motion. In addition to a classical processing method, three innovative modification approaches are recommended to fabricate IPMC, particularly to settle water electrolysis and leakage for multiple practical applications. Also, three applications are extensively highlighted in the later pages of the paper. This is a very new field and with the research done so far, it is believed that IPMC has a potential which is worth research elaborately. This paper presents an overview of the manufacturing components, techniques, related problems and applications of IPMC. Additionally, it recommends innovative modification fabrication approaches to subdue the associated problems in the existing conventional fabrication processing.


2009 ◽  
Vol 419-420 ◽  
pp. 785-788
Author(s):  
Xiu Fen Ye ◽  
Yu Dong Su ◽  
Shu Xiang Guo

An Ionic polymer metal composites (IPMC) actuated 3D swimming microrobot is presented first. Inspired by biologic fins, passive plastic fin is attached to the IPMC strip to increase the thrust. Infrared sensors are equipped for wireless control and autonomous navigation. Then propulsive efficiency analyses are carried out. From the water electrolysis influence analysis of the IPMC, the best working voltage is confirmed. Finally, a two parts IPMC actuator is presented to improve the propulsive efficiency of the microrobot after the analysis of propulsive efficiency of caudal fin.


Author(s):  
Muhammad Farid ◽  
Zhao Gang ◽  
Tran Linh Khuong ◽  
Zhuang Zhi Sun ◽  
Naveed Ur Rehman ◽  
...  

Biomimetic is the field of engineering in which biological creatures and their functions are investigated and are used as the basis for the design and manufacturing of machines. Ionic Polymer Metal Composite (IPMC) is a smart material which has demonstrated a meaningful bending and tip force after the application of a low voltage. It is light-weighted, flexible, easily actuated, multi-directional applicable and requires simple manufacturing. Resultantly, IPMC has attracted scientists and researchers to analyze it further and consider it for any industrial and biomimetic applications. Presently, the research on IPMC is bi-directional oriented. A few groups of researchers are busy to find out the causes for the weaknesses of the material and to find out any remedy for them. The second class of scientists is exploring new areas of applications where IPMC material can be used. Although, the application zone of IPMC is ranging from micropumps diaphragms to surgical holding devices, this paper provides an overview of the IPMC application in biomimetic and biomedical field.


Sign in / Sign up

Export Citation Format

Share Document