Preferential Radionuclide Release Due to Alpha Decay: Effects on Repository Performance

2004 ◽  
Vol 824 ◽  
Author(s):  
David A. Pickett ◽  
William M. Murphy

AbstractWe model preferential release of 237Np, 234U, 230Th, 226Ra, and 210Pb from disposed commercial spent nuclear fuel as a result of alpha recoil damage, using the U.S. Nuclear Regulatory Commission (NRC) Total-system Performance Assessment (TPA) model for the potential repository at Yucca Mountain. Time-dependent augmentation of the ingrown component is simulated by increasing the initial parent inventory; we have used a factor of five increase, based on natural system observations. For 237Np, the magnitude of preferential release is subject to solubility limits. Stochastic TPA runs show a significant effect on modeled dose of preferential 237Np release, but low impact from the other four radionuclides. The mechanism could be ineffective if 237Np is incorporated into secondary phases. While our results are exploratory in nature, this approach to modeling decay-related enhancement of release can be applied in other nuclear waste disposal settings.

Author(s):  
Jerry McNeish ◽  
Peter Swift ◽  
Rob Howard ◽  
David Sevougian ◽  
Donald Kalinich ◽  
...  

The development of a deep geologic repository system in the United States has progressed to the preparation of an application for a license from the U.S. Nuclear Regulatory Commission. The project received site recommendation approval from the U.S. President in early 2002. The next phase of the project involves development of the license application (LA) utilizing the vast body of information accumulated in study of the site at Yucca Mountain, Nevada. Development of the license application involves analyses of the total system performance assessment (TSPA) of the repository, the TSPA-LA. The TSPA includes the available relevant information and model analyses from the various components of the system (e.g., unsaturated geologic zone, engineered system (waste packaging and drift design), and saturated geologic zone) (see Fig. 1 for nominal condition components), and unites that information into a single computer model used for evaluating the potential future performance or degradation of the repository system. The primary regulatory guidance for the repository system is found in 10 CFR 63, which indicates the acceptable risk to future populations from the repository system. The performance analysis must be traceable and transparent, with a defensible basis. The TSPA-LA is being developed utilizing state-of-the-art modeling software and visualization techniques, building on a decade of experience with such analyses. The documentation of the model and the analyses will be developed with transparency and traceability concepts to provide an integrated package for reviewers. The analysis relies on 1000’s of pages of supporting information, and multiple software and process model analyses. The computational environment represents the significant advances in the last 10 years in computer workstations. The overall approach will provide a thorough, transparent compliance analysis for consideration by the U.S. Nuclear Regulatory Commission in evaluating the Yucca Mountain repository.


2002 ◽  
Vol 757 ◽  
Author(s):  
Thomas E. Kiess ◽  
Stephen H. Hanauer

ABSTRACTThe Yucca Mountain site was designated in July 2002 as the United States' location for a geological repository for spent nuclear fuel and other high-level radioactive wastes. This site designation was a watershed event in the history of the project, enabling the U.S. Department of Energy to seek a license from the U.S. Nuclear Regulatory Commission to construct and operate a geologic repository. Summarized below are the history and technical basis for this site designation and some key anticipated future events. Many of the significant events to date have been framed by the Nuclear Waste Policy Act (and Amendments) and the requirements of the regulatory standard.


1995 ◽  
Vol 412 ◽  
Author(s):  
P. A. Laplante ◽  
S. J. Maheras ◽  
M. S. Jarzemba

AbstractTo develop capabilities for compliance determination, the Nuclear Regulatory Commission (NRC) conducts total system performance assessment (TSPA) for the proposed repository at Yucca Mountain (YM) in an iterative manner. Because the new Environmental Protection Agency (EPA) standard for YM may set a dose or risk limit, an auxiliary study was conducted to develop estimates of site-specific dose assessment parameters for future TSPAs. YM site-relevant data was obtained for irrigation, agriculture, resuspension, crop interception, and soil. A Monte Carlo based importance analysis was used to identify predominant parameters for the groundwater pathway. In this analysis, the GENII-S code generated individual annual total effective dose equivalents (TEDEs) for 20 nuclides and 43 sampled parameters based upon unit groundwater concentrations. Scatter plots and correlation results indicate the crop interception fraction, food transfer factors, consumption rates, and irrigation rate are correlated with TEDEs for specific nuclides. Influential parameter groups correspond to expected pathway behavior of specific nuclides. Results for nuclides that transfer more readily to plants, such as 99Tc, indicate crop ingestion pathway parameters are most highly correlated with the TEDE, and those that transfer to milk (59Ni) or beef (79Se, 129I, 135Cs, 137Cs) show predominant correlations with animal product ingestion pathway parameters. Such relationships provide useful insight to important parameters and exposure pathways applicable to doses from specific nuclides.


Author(s):  
Christopher S. Bajwa ◽  
Earl P. Easton ◽  
Harold Adkins ◽  
Judith Cuta ◽  
Nicholas Klymyshyn ◽  
...  

In 2007, a severe transportation accident occurred near Oakland, California, at the interchange known as the “MacArthur Maze.” The accident involved a double tanker truck of gasoline overturning and bursting into flames. The subsequent fire reduced the strength of the supporting steel structure of an overhead interstate roadway causing the collapse of portions of that overpass onto the lower roadway in less than 20 minutes. The US Nuclear Regulatory Commission has analyzed what might have happened had a spent nuclear fuel transportation package been involved in this accident, to determine if there are any potential regulatory implications of this accident to the safe transport of spent nuclear fuel in the United States. This paper provides a summary of this effort, presents preliminary results and conclusions, and discusses future work related to the NRC’s analysis of the consequences of this type of severe accident.


Author(s):  
Wendy J. Reece ◽  
Susan G. Hill

A set of radiation overexposure event reports were reviewed as part of a program to examine human performance in industrial radiography for the U.S. Nuclear Regulatory Commission. Incident records for a seven year period were retrieved from an event database. Ninety-five exposure events were initially categorized and sorted for further analysis. Descriptive models were applied to a subset of severe overexposure events. Modeling included: (1) operational sequence tables to outline the key human actions and interactions with equipment, (2) human reliability event trees, (3) an application of an information processing failures model, and (4) an extrapolated use of the error influences and effects diagram. Results of the modeling analyses provided insights into the industrial radiography task and suggested areas for further action and study to decrease overexposures.


Author(s):  
Donald Wayne Lewis

In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a “Monitored Retrievable Storage” facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to build a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE’s goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility.


Author(s):  
Jeffrey G. Arbital ◽  
Dean R. Tousley ◽  
James C. Anderson

The National Nuclear Security Administration (NNSA) is shipping bulk quantities of fissile materials for disposition purposes, primarily highly enriched uranium (HEU), over the next 15 to 20 years. The U.S. Department of Transportation (DOT) specification 6M container has been the workhorse for NNSA and many other shippers of radioactive material. However, the 6M does not conform to the safety requirements in the Code of Federal Regulations (10 CFR 71[1]) and, for that reason, is being phased out for use in the secure transportation system of the U.S. Department of Energy (DOE) in early 2006. BWXT Y-12 is currently developing the replacement for the DOT 6M container for NNSA and other users. The new package is based on state-of-the-art, proven, and patented technologies that have been successfully applied in the design of other packages. The new package will have a 50% greater capacity for HEU than the 6M, and it will be easier to use with a state-of-the-art closure system on the containment vessel. This new package is extremely important to the future of fissile, radioactive material transportation. An application for license was submitted to the U.S. Nuclear Regulatory Commission (NRC) in February 2005. This paper reviews the license submittal, the licensing process, and the proposed contents of this new state-of-the-art shipping container.


Sign in / Sign up

Export Citation Format

Share Document