Mid-10 cm−2 threading dislocation density in optimized high-Ge content relaxed graded SiGe on Si for III-V solar on Si

2004 ◽  
Vol 836 ◽  
Author(s):  
David M. Isaacson ◽  
Carl L. Dohrman ◽  
Arthur J. Pitera ◽  
Saurabh Gupta ◽  
Eugene A. Fitzgerald

ABSTRACTWe present a framework for obtaining high quality relaxed graded SiGe buffers on Si for III-V integration. By avoiding dislocation nucleation in Si1−xGex layers of x>0.96, we have achieved a relaxed Si0.04Ge0.96 platform on Si(001) offcut 2° that has a threading dislocation density of 7.4×105 cm−2. This 2° offcut orientation was determined to be the minimum necessary for APB-free growth of GaAs. Furthermore, we found that we could compositionally grade the Ge content in the high-Ge portion of the buffer at up to 17 %Ge μm−1 with no penalty to the dislocation density. The reduction in both threading dislocation density and buffer thickness exhibited by our method is an especially significant development for relatively thick minority-carrier devices which use III-V materials such as multi-junction solar cells.

1998 ◽  
Vol 510 ◽  
Author(s):  
A.Y. Kim ◽  
E.A. Fitzgerald

AbstractTo engineer high-quality Inx(AlyGa1−y)1−x P/Ga1−xP graded buffers, we have explored the effects of graded buffer design and MOVPE growth conditions on material quality. We demonstrate that surface roughness causes threading dislocation density (TDD) to increase with continued grading: dislocations and roughness interact in a recursive, escalating cycle to form pileups that cause increasing roughness and dislocation nucleation. Experiments show that V/III ratio, temperature, and grading rate can be used to control dislocation dynamics and surface roughness in InxGa1−xP graded buffers. Control of these parameters individually has resulted in x = 0.34 graded buffers with TDD = 5 × 106 cm−2and roughness = 15 nm and a simple optimization has resulted in TDD = 3 × 106 cm −2and roughness = 10 un. Our most recent work has focused on more sophisticated optimization and the incorporation of aluminum for x > 0.20 to keep the graded buffer completely transparent above 545 nm. Given our results, we expect to achieve transparent, device-quality Inx(AlyGa1−y)1−x P/GaP graded buffers with TDD < 106 cm−2


2012 ◽  
Vol 1432 ◽  
Author(s):  
Ryan M. France ◽  
Myles A. Steiner

ABSTRACTInitial tests are performed regarding the degradation of lattice-mismatched GaInAs solar cells. 1eV metamorphic GaInAs solar cells with 1-2×106 cm-2 threading dislocation density in the active region are irradiated with an 808 nm laser for 2 weeks time under a variety of temperature and illumination conditions. All devices show a small degradation in Voc that is logarithmic with time. The absolute loss in performance after 2 weeks illuminated at 1300 suns equivalent and 125°C is 7 mV Voc and 0.2% efficiency, showing these devices to be relatively stable. The dark current increases with time and is analyzed with a two-diode model. A GaAs control cell degrades at the same rate, suggesting that the observed degradation mechanism is not related to the additional dislocations in the GaInAs devices.


2012 ◽  
Vol 111 (10) ◽  
pp. 103528 ◽  
Author(s):  
R. M. France ◽  
J. F. Geisz ◽  
M. A. Steiner ◽  
B. To ◽  
M. J. Romero ◽  
...  

2016 ◽  
Vol 109 (3) ◽  
pp. 032107 ◽  
Author(s):  
Kevin Nay Yaung ◽  
Michelle Vaisman ◽  
Jordan Lang ◽  
Minjoo Larry Lee

1997 ◽  
Vol 486 ◽  
Author(s):  
Srikanth B. Samavedam ◽  
Matthew T. Currie ◽  
Thomas A. Langdo ◽  
Steve M. Ting ◽  
Eugene A. Fitzgerald

AbstractGermanium (Ge) photodiodes are capable of high quantum yields and can operate at gigahertz frequencies in the 1–1.6 μm wavelength regime. The compatibility of SiGe alloys with Si substrates makes Ge a natural choice for photodetectors in Si-based optoelectronics applications. The large lattice mismatch (≈4%) between Si and Ge, however, leads to the formation of a high density of misfit and associated threading dislocations when uniform Ge layers are grown on Si substrates. High quality Ge layers were grown on relaxed graded SiGe/Si layers by ultra-high vacuum chemical vapor deposition (UHVCVD). Typically, as the Ge concentration in the graded layers increases, strain fields from underlying misfit dislocations result in increased surface roughness and the formation of dislocation pile-ups. The generation of pile-ups increases the threading dislocation density in the relaxed layers. In this study the pileup formation was minimized by growing on miscut (001) substrates employing a chemical mechanical polishing (CMP) step within the epitaxial structure. Other problems such as the thermal mismatch between Si and Ge, results in unwanted residual tensile stresses and surface microcracks when the substrates are cooled from the growth temperature. Compressive strain has been incorporated into the graded layers to overcome the thermal mismatch problem, resulting in crack-free relaxed cubic Ge on Si at room temperature. The overall result of the CMP step and the growth modifications have eliminated dislocation pile-ups, decreased gas-phase nucleation of particles, and eliminated the increase in threading dislocation density that occurs when grading to Ge concentrations greater than 70% Ge. The threading dislocation density in the Ge layers determined through plan view transmission electron microscopy (TEM) and etch pit density (EPD) was found to be in the range of 2 × 106/cm2. Ge p-n diodes were fabricated to assess the electronic quality and prove the feasibility of high quality photodetectors on Si substrates.


2013 ◽  
Vol 740-742 ◽  
pp. 73-76 ◽  
Author(s):  
Motohisa Kado ◽  
Hironori Daikoku ◽  
Hidemitsu Sakamoto ◽  
Hiroshi Suzuki ◽  
Takeshi Bessho ◽  
...  

In this study, we have investigated the rate-limiting process of 4H-SiC solution growth using Si-Cr based melt, and have tried high-speed growth. It is revealed that the rate-limiting process of SiC growth under our experimental condition is interface kinetics, which can be controlled by such factors as temperature and supersaturation of carbon. By enhancing the interface kinetics, SiC crystal has been grown at a high rate of 2 mm/h. The FWHM values of X-ray rocking curves and threading dislocation density of the grown crystals are almost the same as those of seed crystal. Possibility of high-speed and high-quality growth of 4H-SiC has been indicated.


2015 ◽  
Vol 54 (11) ◽  
pp. 115501 ◽  
Author(s):  
Motoaki Iwaya ◽  
Taiji Yamamoto ◽  
Daisuke Iida ◽  
Yasunari Kondo ◽  
Mihoko Sowa ◽  
...  

2015 ◽  
Vol 213 (1) ◽  
pp. 96-101
Author(s):  
G. Calabrese ◽  
S. Baricordi ◽  
P. Bernardoni ◽  
D. De Salvador ◽  
M. Ferroni ◽  
...  

1995 ◽  
Vol 378 ◽  
Author(s):  
G. Kissinger ◽  
T. Morgenstern ◽  
G. Morgenstern ◽  
H. B. Erzgräber ◽  
H. Richter

AbstractStepwise equilibrated graded GexSii-x (x≤0.2) buffers with threading dislocation densities between 102 and 103 cm−2 on the whole area of 4 inch silicon wafers were grown and studied by transmission electron microscopy, defect etching, atomic force microscopy and photoluminescence spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document