An in-situ X-ray Diffraction Study of the Desorption of TiCl3-doped Sodium Alanate

2004 ◽  
Vol 837 ◽  
Author(s):  
Scott A. Speakman ◽  
Joachim H. Schneibel ◽  
Dewey S. Easton

ABSTRACTSodium alanate was milled with and without TiCl3. The hydrogen release and uptake was measured during temperature-programmed absorption and desorption, as well as by isothermal charging and discharging, using a Sieverts' type apparatus. These data were supplemented by in-situ X-ray diffraction studies of hydrogen desorption. Rate constants derived from XRD were slower than those derived from volumetric H2 measurements. Al formation observed in XRD exceeded that expected from the observed decomposition of NaAlH4 and Na3AlH6.

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 849
Author(s):  
Gracia Shokano ◽  
Zahir Dehouche ◽  
Basile Galey ◽  
Georgeta Postole

The present work involves the development of a novel method for the fabrication of zirconium nickel (Zr(x)Ni(y)) alloy used as a nanocatalyst to improve the hydrogen storage properties of the Mg/MgH2 system. The catalyst was fabricated through the high-pressure reactor and activated under hydrogen prior to being mechanically milled with the MgH2 for 5 h under argon. The microstructure characterisation of the samples was determined via SEM-EDX (scanning electron microscope analysis–energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and FE-HRTEM (field emission high resolution transmission electron microscopy), and the desorption characteristic of the nanocomposite (10 wt.% Zr(x)Ni(y)–MgH2) was determined via TPD (temperature-programmed desorption). The nanostructured MgH2 powder milled with 10 wt.% of the activated Zr(x)Ni(y) based nanocatalyst resulted in a faster hydrogen release—5.9 H2-wt.% at onset temperature 210 °C/peak temperature 232 °C. The observed significant improvement in the hydrogen desorption properties was likely to be the result of the impact of the highly dispersed catalyst on the surface of the Mg/MgH2 system, the reduction in particle size during the ball milling process and/or the formation of Mg0.996Zr0.004 phase during the milling process.


2007 ◽  
Vol 128 ◽  
pp. 47-52 ◽  
Author(s):  
R.A. Varin ◽  
Ch. Chiu ◽  
Zbigniew S. Wronski ◽  
Andrzej Calka

In this work oxidized and oxide-free amorphous boron (a-B) powder and elemental Mg were used in an attempt to directly synthesize the Mg(BH4)2 complex hydride by controlled reactive mechanical alloying (CRMA) under hydrogen in a magneto-mill up to 200h. The particle size was refined to the 100-200nm range. Nanocrystalline MgH2 (~6nm crystallite size) was formed within the particles when an oxidized a-B is used. In contrast, a mixture of MgB2 and an amorphous hydride MgHx was formed when an oxide-free a-B was used. Differential scanning calorimetry (DSC) test up to 500°C produced a single endothermic heat event at 357.7°C due to hydrogen desorption. In addition, desorption conducted in a Sieverts-type apparatus revealed ~1.4wt.% of hydrogen release. The X-ray diffraction pattern after DSC test of the 200h milled sample made with oxide-free boron showed the presence of MgB2.


2016 ◽  
Vol 879 ◽  
pp. 2032-2037 ◽  
Author(s):  
Gabriele Lapi ◽  
Carlo Alvani ◽  
Francesca Varsano ◽  
Saulius Kaciulis ◽  
Roberto Montanari ◽  
...  

The present work investigates the effect of heat treatments in air on the surface and structure of titanium hydride (TiH2) and hydrogen desorption. TiH2 has been heated in air at 440 and 540 °C for increasing time up to 180 min. to obtain the samples representative of 12 different oxidation conditions. The samples have been then examined by Temperature Programmed Desorption (TPD), X-Ray Diffraction (XRD) and Photoelectron Spectroscopy (XPS). Experimental results are presented and discussed.


2011 ◽  
Vol 509 ◽  
pp. S629-S632 ◽  
Author(s):  
Siarhei Kalinichenka ◽  
Lars Röntzsch ◽  
Carsten Baehtz ◽  
Thomas Weißgärber ◽  
Bernd Kieback

Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 768 ◽  
Author(s):  
Shuang Ding ◽  
Jiankang Zhao ◽  
Qiang Yu

Vapor-phase ketonization of propionic acid derived from biomass was studied at 300–375 °C over ZrO2 with different zirconia polymorph. The tetragonal ZrO2 (t-ZrO2) are more active than monoclinic ZrO2 (m-ZrO2). The results of characterizations from X-ray diffraction (XRD) and Raman suggest m-ZrO2 and t-ZrO2 are synthesized by the solvothermal method. NH3 and CO2 temperature-programmed desorption (NH3-TPD and CO2-TPD) measurements show that there were more medium-strength Lewis acid base sites with lower coordination exposed on m-ZrO2 relative to t-ZrO2, increasing the adsorption strength of propionic acid. The in situ DRIFTS (Diffuse reflectance infrared Fourier transform spectroscopy) of adsorbed propionic acid under ketonization reaction reveal that as the most abundant surface intermediates, the monodentate propionates are more active than bidentate propionates. In comparison with m-ZrO2, the t-ZrO2 surface favors monodentate adsorption over bidentate adsorption. Additionally, the adsorption strength of monodentate propionate is weaker on t-ZrO2. These differences in adsorption configuration and adsorption strength of propionic acid are affected by the zirconia structure. The higher surface concentration and weaker adsorption strength of monodentate propionates contribute to the higher ketonization rate in the steady state.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 62 ◽  
Author(s):  
Gunugunuri K. Reddy ◽  
Torin C. Peck ◽  
Charles A. Roberts

Direct decomposition of NO into N2 and O2 (2NO→N2 + O2) is recognized as the “ideal” reaction for NOx removal because it needs no reductant. It was reported that the spinel Co3O4 is one of the most active single-element oxide catalysts for NO decomposition at higher reaction temperatures, however, activity remains low below 650 °C. The present study aims to investigate new promoters for Co3O4, specifically PdO vs. PtO. Interestingly, the PdO promoter effect on Co3O4 was much greater than the PtO effect, yielding a 4 times higher activity for direct NO decomposition at 650 °C. Also, Co3O4 catalysts with the PdO promoter exhibit higher selectivity to N2 compared to PtO/Co3O4 catalysts. Several characterization measurements, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), and in situ FT-IR, were performed to understand the effect of PdO vs. PtO on the properties of Co3O4. Structural and surface analysis measurements show that impregnation of PdO on Co3O4 leads to a greater ease of reduction of the catalysts and an increased thermal stability of surface adsorbed NOx species, which contribute to promotion of direct NO decomposition activity. In contrast, rather than remaining solely as a surface species, PtO enters the Co3O4 structure, and it promotes neither redox properties nor NO adsorption properties of Co3O4, resulting in a diminished promotional effect compared to PdO.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 807
Author(s):  
Zen Maeno ◽  
Xiaopeng Wu ◽  
Shunsaku Yasumura ◽  
Takashi Toyao ◽  
Yasuharu Kanda ◽  
...  

In this study, the characterization of In-exchanged CHA zeolite (In-CHA (SiO2/Al2O3 = 22.3)) was conducted by in-situ X-ray diffraction (XRD) and ammonia temperature-programmed desorption (NH3-TPD). We also prepared other In-exchanged zeolites with different zeolite structures (In-MFI (SiO2/Al2O3 = 22.3), In-MOR (SiO2/Al2O3 = 20), and In-BEA (SiO2/Al2O3 = 25)) and different SiO2/Al2O3 ratios (In-CHA(Al-rich) (SiO2/Al2O3 = 13.7)). Their catalytic activities in nonoxidative ethane dehydrogenation were compared. Among the tested catalysts, In-CHA(Al-rich) provided the highest conversion. From kinetic experiments and in-situ Fourier transform infrared (FTIR) spectroscopy, [InH2]+ ions are formed regardless of SiO2/Al2O3 ratio, serving as the active sites.


2020 ◽  
Vol 15 (2) ◽  
pp. 197-203
Author(s):  
Yujie Sun ◽  
Xia Yang ◽  
Yue Huang ◽  
Jianquan Li ◽  
Xinghua Cen ◽  
...  

In this study, we investigated the influence of MnTiO3 nanoparticles additive on hydrogen released performance of NaAlH4 for the first time. The MnTiO3 nanoparticles were successfully synthesized using conventional solid-state ceramic route. It was found that the hydrogen released performance of NaAlH4 can be significantly improved by the addition of MnTiO3 nanoparticles. Meantime, the composite of NaAlH4 doped 5 wt% MnTiO3 possessed excellent dehydrogenation properties, the onset dehydrogenation temperature was only 70.6 °C, reduced by about 105 °C in comparison with the pristine NaAlH4, and approximately 5.01 wt% of hydrogen could be released from composite with temperature heated to 220 °C. The isothermal dehydrogenation test results indicated that the amount of hydrogen released by NaAlH4-5 wt% MnTiO3 composite could reach 4.4 wt% under 200 °C within 25 min. According to the analysis of X-ray diffraction, the presence of MnTiO3 nanoparticles did not alter the overall dehydrogenation pathway of NaAlH4, and the Al3 Ti phases formed after dehydrogenation, which enhanced hydrogen desorption performances of NaAlH4 .


2015 ◽  
Vol 119 (14) ◽  
pp. 7765-7770 ◽  
Author(s):  
C. Maurizio ◽  
R. Checchetto ◽  
A. Trapananti ◽  
A. Rizzo ◽  
F. D’Acapito ◽  
...  

2014 ◽  
Vol 2 (39) ◽  
pp. 16594-16600 ◽  
Author(s):  
Terry D. Humphries ◽  
Joshua W. Makepeace ◽  
Satoshi Hino ◽  
William I. F. David ◽  
Bjørn C. Hauback

The regeneration pathway of sodium alanate has been studied by in situ synchrotron powder X-ray diffraction and powder neutron diffraction.


Sign in / Sign up

Export Citation Format

Share Document