Polymeric materials for Solar Sail: The combined effects of polymer thickness, radiation, and temperature

2004 ◽  
Vol 851 ◽  
Author(s):  
David L. Edwards ◽  
Mircea Chipara

ABSTRACTThe feasibility and the performance of solar sail depend critically on the availability of light materials and extremely thin polymeric films. The main requirements imposed on solar sail materials are analyzed in depth. The potential effects of the space environment are discussed in detail, with emphasis on the radiation-temperature-polymeric film thickness relationships. It is shown that the radiation component of the space environment triggers two competing degradation processes (erosion and depolymerization) and that both processes act towards the decrease in the glass transition temperature.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4822
Author(s):  
Szabolcs Pásztor ◽  
Bálint Becsei ◽  
Györgyi Szarka ◽  
Yi Thomann ◽  
Ralf Thomann ◽  
...  

The glass transition temperature (Tg) is one of the most important properties of polymeric materials. In order to reveal whether the scissors effect, i.e., the Fox–Flory relationship between Tg and the average molecular weight between crosslinking points (Mc), reported only in one case for polymer conetworks so far, is more generally effective or valid only for a single case, a series of poly(methyl methacrylate)-l-polyisobutylene (PMMA-l-PIB) conetworks was prepared and investigated. Two Tgs were found for the conetworks by DSC. Fox–Flory type dependence between Tg and Mc of the PMMA component (Tg = Tg,∞ − K/Mc) was observed. The K constants for the PMMA homopolymer and for the PMMA in the conetworks were the same in the margin of error. AFM images indicated disordered bicontinuous, mutually nanoconfined morphology with average domain sizes of 5–20 nm, but the correlation between Tg and domain sizes was not found. These new results indicate that the macrocrosslinkers act like molecular scissors (scissors effect), and the Tg of PMMA depend exclusively on the Mc in the conetworks. Consequently, these findings mean that the scissors effect is presumably a general phenomenon in nanophase-separated polymer conetworks, and this finding could be utilized in designing, processing, and applications of these novel materials.


2011 ◽  
Vol 287-290 ◽  
pp. 2234-2239 ◽  
Author(s):  
Sil Ro Jin ◽  
Jong Keun Lee

The effects of the polyhedral oligomeric silsequioxanes (POSS) in stacked poly(methyl methacrylate) (PMMA) film samples were investigated in two different film thicknesses, ~50 and ~660 nm. The types of the POSS include methacryl-, octaisobutyl-, and octasilane-POSS. The glass transition temperature (Tg) and isothermal physical aging was depressed by the reduction of film thickness. Among POSS molecules used in this work, methacryl-POSS was the greatest effect in both Tgand relaxation enthalpy (DHRelax) due to the physical aging. The Kohlrausch-Williams-Watts (KWW) relaxation function was used to further understand the effect of POSS and film thickness on the physical aging.


2004 ◽  
Vol 851 ◽  
Author(s):  
Ramón Artiaga ◽  
Ricardo Cao ◽  
Salvador Naya ◽  
Ana García

ABSTRACTThis work applies different thermal analysis methods to polymer based materials degradation, studying the degradation process itself and evaluating the degree of material damage as a consequence of chemical degradation by thermal or radiation effects. On the one hand, thermal degradation in varied atmospheres is investigated by means of thermogravimetric analysis (TGA) in dynamic experiments. The authors find that the evolution of the sample mass follows a mixture of logistics models, and these can fit an overall TGA curve. The fitting parameters have important physical meaning related to the kinetics of the different processes involved and to the relative amount of each component in the sample. The method itself entails separating overlapping processes. Other improvements made by the authors are related to reducing the noise and smoothing the TGA and differential scanning calorimetry (DSC) data, particularly when estimating TGA derivatives through logistic regression.Analyzing many materials by means of TGA results in more or less complex traces that do not allow a simple parametric fit like the one described above. Although it reproduces asymptoticity at the beginning and end of the reaction, there are times when many processes overlap, resulting in a complex trace that would need a high number of logistic components to be adequately fitted. However, it is possible to use a local polynomial regression model instead. This is also applicable to DSC traces, whose shapes are totally different from those found in TGA. The authors propose a model based on a nonparametric estimation, where the fit's suitability very much depends on the bandwidth selection, especially where derivatives are concerned. The proposed model gives a satisfactory fitting. It smoothes noise and always provides reliable values, different from those obtained by other methods strongly dependent on user choice.On the other hand, to evaluate the degree of damage by thermal analysis methods, dynamic mechanical analysis (DMA) is applied to polyamides. The glass transition temperature is measured before and after exposure to varying doses of proton radiation, emulating the space environment. Other examples show how exposure over long periods at moderately elevated temperatures results in reduction of some mechanical properties. Additionally, the effect of different nanofillers on styrene-isoprene-styrene block copolymers is evaluated by DMA. A shift in the glass transition temperature seems to be dependent on nanofiller content. The degradation of some materials suitable for space applications, such as polyethylene and polyamide, are also briefly reviewed.


2005 ◽  
Vol 77 (5) ◽  
pp. 801-814 ◽  
Author(s):  
Ju Young Shin ◽  
Ji Yong Park ◽  
Chenyang Liu ◽  
Jiasong He ◽  
Sung Chul Kim

Cyclic olefin copolymers comprise a new class of polymeric materials showing properties of high glass-transition temperature, optical clarity, low shrinkage, low moisture absorption, and low birefringence. There are several types of cyclic olefin copolymers based on different types of cyclic monomers and polymerization methods. In this work, we have analyzed the chemical structure of the currently commercialized cyclic olefin copolymers by 13C NMR, and investigated their glass-transition temperatures and surface characteristics. It was observed that the glass-transition temperature, Tg, of cyclic olefin copolymers depended on the bulkiness of the main chain, and the number of rings had an important role in increasing the bulkiness of cyclic olefin copolymers. Cyclic olefin copolymers with polar substituents such as ester or ether groups showed high surface energy per area and peel strength.


1989 ◽  
Vol 179 ◽  
Author(s):  
K. P. Grosskurth

AbstractPolymer-modified cement concrete represents a heterogeneous material whose properties are influenced more by the properties of the polymers than by the properties of the cement component. Typical of polymeric materials are their temperature dependent behavior. This temperature dependence can be related to the glass transition temperature of the polymer. In cases where the temperature is higher than the glass transition temperature, strength decreases while deformability simultaneously increases. Polymeric films are formed in the dispersed polymer systems as a result of reactions occurring at the glass transition temperature. A styrene/acrylic modified concrete was studied at different polymer loadings. The tensile and compressive strengths of this system were studied as a function of temperature. Increasing deformability temperatures principally at higher polymer loadings near the glass transition temperature and decreasing strength occurred.


1995 ◽  
Vol 381 ◽  
Author(s):  
Wen-Li Wu ◽  
William E Wallace ◽  
John Van Zanten

AbstractThe glass transition temperature, Tg, of polystyrene (PS) thin films on silicon wafers with different surface preparations was determined in order to explore the effect of interfacial interaction energy on local chain dynamics. To enhance interface behavior, the film thickness included in this work was as low as 50 Å. PS with monodisperse molecular weights was chosen as a model polymer. Two different silicon surfaces were prepared: sulfuric acid-clean and hydrogen passivated. Tg of thin films was determined by monitoring the film thickness as a function of temperature. Tgwas identified as the temperature where the thermal expansion coefficient underwent an abrupt change. X-ray reflectivity was used to determine film thickness with a precision of a few angstroms. Tg of PS was found to depend strongly on the initial film thickness, as well as the substrate surface.


2012 ◽  
Vol 482-484 ◽  
pp. 1457-1460
Author(s):  
Yi Jin Ren

The glass transition temperaure Tg of amorphous polymer thin film was investigated. The opposite experimental results, the increase or decrease in Tg of thin film with decreasing film thickness, were found. It was believed that the free surface near the polymer-air interface has a smaller chain ends density, leading to the decrease in Tg; while the polymer-substrate interface has a larger chain ends density, resulting in the increase in Tg. However, there are a competition between the both, and the interaction of polymer and substrate is a dominant factor to affect Tg of thin film. In addition, the multilayer model of thin film was proposed to explain the effect of the free surface and the interface on the Tg of thin film.


Sign in / Sign up

Export Citation Format

Share Document