Wide-gap CIGS solar cells with Zn1-yMgyO transparent conducting film

2005 ◽  
Vol 865 ◽  
Author(s):  
K. Matsubara ◽  
A. Yamada ◽  
S. Ishizuka ◽  
K. Sakurai ◽  
H. Tampo ◽  
...  

AbstractZn1-yMgyO bandgap controllable transparent conducting films were used for the wide-gap Cu(In1-xGax)Se2 thin film solar cells. Undoped Zn1-yMgyO and Al doped Zn1-yMgyO films were deposited by co-sputtering using a carousel type sputtering apparatus. Zn1-yMgyO films with Mg content y of up to 0.10 were examined. For Cu(In1-xGax)Se2 with band gap energy ˜1.38 eV, the cell performance was slightly improved by using Zn1-yMgyO and Al doped Zn1-yMgyO instead of ZnO and Al doped ZnO. An unexpected improvement of short circuit current density was observed.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4268
Author(s):  
Jessica de Wild ◽  
Gizem Birant ◽  
Guy Brammertz ◽  
Marc Meuris ◽  
Jef Poortmans ◽  
...  

Ultrathin Cu(In,Ga)Se2 (CIGS) absorber layers of 550 nm were grown on Ag/AlOx stacks. The addition of the stack resulted in solar cells with improved fill factor, open circuit voltage and short circuit current density. The efficiency was increased from 7% to almost 12%. Photoluminescence (PL) and time resolved PL were improved, which was attributed to the passivating properties of AlOx. A current increase of almost 2 mA/cm2 was measured, due to increased light scattering and surface roughness. With time of flight—secondary ion mass spectroscopy, the elemental profiles were measured. It was found that the Ag is incorporated through the whole CIGS layer. Secondary electron microscopic images of the Mo back revealed residuals of the Ag/AlOx stack, which was confirmed by energy dispersive X-ray spectroscopy measurements. It is assumed to induce the increased surface roughness and scattering properties. At the front, large stains are visible for the cells with the Ag/AlOx back contact. An ammonia sulfide etching step was therefore applied on the bare absorber improving the efficiency further to 11.7%. It shows the potential of utilizing an Ag/AlOx stack at the back to improve both electrical and optical properties of ultrathin CIGS solar cells.


Author(s):  
C. O. Lawani ◽  
G. J. Ibeha ◽  
Olumide Ige ◽  
Eli Danladi ◽  
J. O. Emmanuela ◽  
...  

The effect of multivalent defect density, thickness of absorber and buffer layer thickness on the performance of CIGS solar cells were investigated systematically. The study was carried out using Solar Cells Capacitance Simulator (SCAPS) code, which is capable of solving the basic semiconductor equations. Employing numerical modelling, a solar cell with the structure Al|ZnO : Al|In2S3|CIGS|Pt was simulated and in it, a double acceptor defect (-2/-1/0) with a density of 1014 cm-3 was set in the absorber in the first instance. This initial device gave a power conversion efficiency (PCE) of 25.85 %, short circuit current density (Jsc) of 37.9576 mAcm-2, Photovoltage (Voc) of 0.7992 V and fill factor (FF) of 85.22 %. When the density of multivalent defect (-2/-1/0) was varied between 1010 cm-3 and 1017 cm-3 the solar cells performance dropped from 26.81 % to 16.87 %. The champion device was with multivalent defect of 1010 cm-3 which shows an enhancement of 3.71 % from the pristine device. On varying the CIGS layer thickness from 0.4 um to 3.6 um, an increase in PCE was observed from 0.4 um to 1.2 um then the PCE began to decrease beyond a thickness of 1.2 um. The best PCE was recorded with thickness of 1.2 um which gave Jsc of 37.7506 mAcm-2, Voc of 0.8059 V, FF of 85.2655 %. On varying the In2S3 (buffer) layer thickness from 0.01 um to 0.08 um, we observed that there was no significant change in photovoltaic parameters of the solar cells as buffer layer thickness increased.


1987 ◽  
Vol 95 ◽  
Author(s):  
C. Walker ◽  
R. E. Hollingsworth ◽  
A. Madan

AbstractA-Si:H p-i-n solar cells were deposited on textured transparent conducting oxide coated glass substrates to experimentally determine the enhancement in the short circuit current density. It was found that the optical thickness can be increased by a factor from 3 to 5. These results agree reasonably well with the predictions of optical enhancement theory.


2020 ◽  
Vol 89 (3) ◽  
pp. 30201 ◽  
Author(s):  
Xi Guan ◽  
Shiyu Wang ◽  
Wenxing Liu ◽  
Dashan Qin ◽  
Dayan Ban

Organic solar cells based on planar copper phthalocyanine (CuPc)/C60 heterojunction have been characterized, in which a 2 nm-thick layer of bathocuproine (BCP) is inserted into the CuPc layer. The thin layer of BCP allows hole current to tunnel it through but blocks the exciton diffusion, thereby altering the steady-state exciton profile in the CuPc zone (zone 1) sandwiched between BCP and C60. The short-circuit current density (JSC) of device is limited by the hole-exciton scattering effect at the BCP/CuPc (zone 1) interface. Based on the variation of JSC with the width of zone 1, the exciton diffusion length of CuPc is deduced to be 12.5–15 nm. The current research provides an easy and helpful method to determine the exciton diffusion lengths of organic electron donors.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Xiaojun Zhu ◽  
Xiaoping Zou ◽  
Hongquan Zhou

We use the successive ionic layer adsorption and reaction (SILAR) method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.


Author(s):  
Nur Shakina Mohd Shariff ◽  
Puteri Sarah Mohamad Saad ◽  
Mohamad Rusop Mahmood

There has been an increasing interest towards organic solar cells after the discovery of conjugated polymer and bulk-heterojunction concept. Eventhough organic solar cells are less expensive than inorganic solar cells but the power conversion energy is still considered low. The main objective of this research is to investigate the effect of the P3HT’s thickness and concentration towards the efficiency of the P3HT:Graphene solar cells. A simulation software that is specialize for photovoltaic called SCAPS is used in this research to simulate the effect on the solar cells. The solar cell’s structure will be drawn inside the simulation and the parameters for each layers is inserted. The result such as the open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), efficiency (η), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristic will be calculated by the software and all the results will be put into one graph.


Sign in / Sign up

Export Citation Format

Share Document