Physical Vapor Deposition Synthesis of Cu3BiS3 for Application in Thin Film Photovoltaics

2005 ◽  
Vol 865 ◽  
Author(s):  
Nathan J. Gerein ◽  
Joel A. Haber

AbstractThe development of novel solar absorbers and device configurations that incorporate only materials which are cost effective, abundant, and non-toxic may be required for widespread deployment of photovoltaics. Cu3BiS3 (Eg=1.2 eV) has been previously reported to be a suitable solar absorber for use in thin film photovoltaic devices. We have developed a physical vapor deposition synthesis for Cu3BiS3, and will employ combinatorial methods to identify novel device configurations in an effort to produce a device exhibiting sufficient efficiency to capture the interest of the photovoltaics community.

2013 ◽  
Vol 535 ◽  
pp. 394-397 ◽  
Author(s):  
Sebastian ten Haaf ◽  
Hendrik Sträter ◽  
Rudolf Brüggemann ◽  
Gottfried H. Bauer ◽  
Claudia Felser ◽  
...  

2012 ◽  
Vol 1 (1) ◽  
pp. 46 ◽  
Author(s):  
Amir Mahyar Khorasani ◽  
Mohammad Reza Solymany yazdi ◽  
Mehdi Faraji ◽  
Alex Kootsookos

Thin-film coating plays a prominent role on the manufacture of many industrial devices. Coating can increase material performance due to the deposition process. Having adequate and precise model that can predict the hardness of PVD and CVD processes is so helpful for manufacturers and engineers to choose suitable parameters in order to obtain the best hardness and decreasing cost and time of industrial productions. This paper proposes the estimation of hardness of titanium thin-film layers as protective industrial tools by using multi-layer perceptron (MLP) neural network. Based on the experimental data that was obtained during the process of chemical vapor deposition (CVD) and physical vapor deposition (PVD), the modeling of the coating variables for predicting hardness of titanium thin-film layers, is performed. Then, the obtained results are experimentally verified and very accurate outcomes had been attained.


2016 ◽  
Vol 70 (11) ◽  
Author(s):  
Andreas Eder ◽  
Gerwin H.S. Schmid ◽  
Harald Mahr ◽  
Christoph Eisenmenger-Sittner

2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000175-000182
Author(s):  
Carol Putman ◽  
Rachel Cramm Horn ◽  
Ambrose Wolf ◽  
Daniel Krueger

Abstract Low temperature cofired ceramic (LTCC) has been established as an excellent packaging technology for high reliability, high density microelectronics. The functionality and robustness of rework has been increased through the incorporation of a Physical Vapor Deposition (PVD) thin film Ti/Cu/Pt/Au metallization. PVD metallization is suitable for RF (Radio Frequency) applications as well as digital systems. Adhesion of the Ti “adhesion layer” to the LTCC as-fired surface is not well understood. While past work has established extrinsic parameters for delamination mechanisms of thin films on LTCC substrates, there is incomplete information regarding the intrinsic (i.e. thermodynamic) parameters in literature. This paper analyzes the thermodynamic favorability of adhesion between Ti, Cr, and their oxides coatings on LTCC (assumed as amorphous silica glass and Al2O3). Computational molecular calculations are used to determine interface energy as an indication of molecular stability over a range of temperatures. The end result will expand the understanding of thin film adhesion to LTCC surfaces and assist in increasing the long-term reliability of the interface bonding on RF microelectronic layers.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 578
Author(s):  
Diana M. Mena Romero ◽  
David Victoria Valenzuela ◽  
Cristy L. Azanza Ricardo

Cu 2 ZnSnS 4 (CZTS) is a quaternary semiconductor that has emerged as a promising component in solar absorber materials due to its excellent optical properties such as band-gap energy of ca. 1.5 eV and significant absorption coefficient in the order of 10 4 cm − 1 . Nevertheless, the energy conversion efficiency of CZTS-based devices has not reached the theoretical limits yet, possibly due to the existence of antisite defects (such as Cu Zn or Zn Cu ) and secondary phases. Based on electronic similarities with Zn, Mg has been proposed for Zn substitution in the CZTS structure in the design of alternative semiconductors for thin-film solar cell applications. This work aims to study the properties of the CZTS having Mg incorporated in the structure replacing Zn, with the following stoichiometry: x = 0, 0.25, 0.5, 0.75, and 1 in the formula Cu 2 Zn 1 − x Mg x SnS 4 (CZ-MTS). The semiconductor was prepared by the hot injection method, using oleylamine (OLA) as both surfactant and solvent. The presence and concentration of incorporated Mg allowed the fine-tuning of the CZ-MTS semiconductor’s structural and optical properties. Furthermore, it was observed that the inclusion of Mg in the CZTS structure leads to a better embodiment ratio of the Zn during the synthesis, thus reducing the excess of starting precursors. In summary, CZ-MTS is a promising candidate to fabricate high efficient and cost-effective thin-film solar cells made of earth-abundant elements.


Sign in / Sign up

Export Citation Format

Share Document